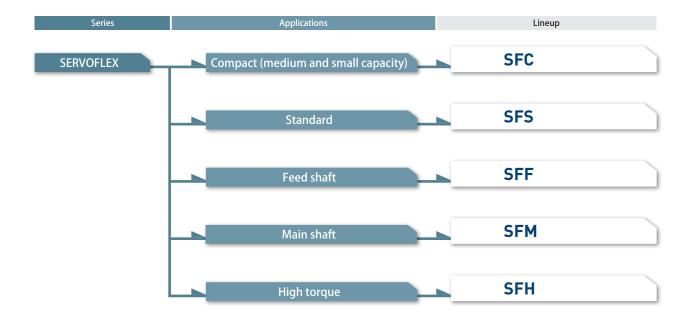


Metal Disc Couplings SERVOFLEX

Max. rated torque [N·m]	8000
Bore ranges [mm]	ϕ 3 \sim 115
Operating temperature range[° C]	$-30 \sim 120(100)$
Drive	Servomotor/stepper motor
Applications	Machine tool / semiconductor manufacturing equipment / printing press / packing machine
· · · · · · · · · · · · · · · · · · ·	


High-stiffness and Low-inertia Servomotor Couplings

Metal disc couplings developed for high-speed and high-precision positioning and ultra-precise control of servomotors, etc. While achieving high stiffness, high torque, low inertia, and high response speed, these couplings are also flexible in the torsional direction, in the uneven directions, and in the shaft direction, and are totally free from backlash. Models with various characteristics are available, and each model has a single element type that emphasizes stiffness and a double element type that emphasizes flexibility.

Available Models

Model Selection

Model type		Rated to	orque [N · m]		High stiffness	Low inertia	Mountability	Mounting accuracy	High-speed rotation	Material	Operating temperature [°C]	
	0.1 1	10	100	1000 10	000							
SFC		0.25 ~ 250			O	•	•	O	O	Aluminum alloy	-30~100	
SFS			$20 \sim 800$		\odot	\bigcirc	\bigtriangleup	\bigcirc	\bigcirc	Steel	-30 ~ 120	
						-	-	-	-			
SFF			8 ~ 1000		•		\bigcirc	•	\bigcirc	Steel	-30~120	
SFM			60 ~ 10	00	•	\bigcirc	\bigcirc			Steel	-30 ~ 120	
					·	<u> </u>	Ŭ	•	•			
SFH				1000 \sim 800		\bigcirc	\bigtriangleup	\bigcirc	\bigcirc	Steel	-30 ~ 120	

* Symbols in the table indicate four levels of adaptability in order of OOA with O showing the highest level of adaptability and A showing the lowest level. (Adaptability high OOA low)

Product Lineup

- * 2 The collar material in the marked area is S45C in sizes #080 to #100, and the surface finishing is trivalent chrome treatment.
 * 3 The bolt surface finishing in the marked area is anti-rust coating in sizes #080 to #100.

SFS

 $SFS(S) \square M - \square M$

Applications: Machine tool, printing press, packing machine, coater/ Max. rated torgue coating machine Bore ranges

Parts Delivery

Wide Variations

SERVOFLEX standard model. 18 types with different numbers of elements, distances between shafts, shaft connection methods, etc. are available. You can select the electroless nickel plating for the pilot bore and key/set screw.

SFS(S)

Reamer bolt material: Alloy steel for

machine structural use Surface finishing: Black coating applied

SFS(S-C)

steel for machine structural use urface finishing: Black coating applied Element material: SUS304 metal disc Collar: S45C or an equivalent

> Flange material: S45C heat-treated aterial or an equivalent Surface finishing: Black coating applied

screw with hexagonal hole material:

Collar: S45C or an equivalent

plating treatment

Reamer bolt material: Alloy steel for machine structural use

Surface finishing: Electroless nickel plating treatment

structural use Surface finishing: Black coating applied Flange material: S45C heat-treated material or an equivaler Surface finishing: Black coating applied Element material: SUS304 metal disc Collar: S45C or an equivalent

Collar material: S45C or an equivalent Surface finishing: Black coating applied

bolt material: Alloy steel for machine structural use finishing: Black coating applied

Sleeve material: S45C heat-treated material or an equivalent Surface finishing: Black coating applied

SFS(W)

Spacer material: SS400 or an equivalen Surface finishing: Black coating applied

Collar: S45C or an equivalent Flange material: \$45C heat-treated

Element material: SUS304 metal disc

material or an equivalent Surface finishing: Black coating applied

amer bolt material: Alloy steel for machine structural use Surface finishing: Black coating applied

coupling could not be mounted. You can also order an assembled coupling to be delivered or combine different types of hubs.

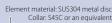
SFS(S) MC bolt material: Alloy steel for machine structural use

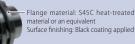
You can order the parts of the coupling to be delivered instead of an assembled coupling, so you can use this coupling in a design in which the assembled

Surface finishing: Black coating applied

Reamer bolt material: Alloy steel for machine structural use Surface finishing: Black coating applied Flange material: S45C heat-treated material or an equivalent Surface finishing: Black coating applied

[N·m]

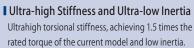

[mm]

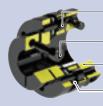

800 $\phi 8 \sim 60$

Element material: SUS304 metal disc Collar: S45C or an equivalent Collar material: S45C or an equivalent

Surface finishing: Black coating applied Sleeve material: S45C heat-treated material or an equivalent Surface finishing: Black coating applied

SFS(G)




Spacer material: Carbon steel Surface finishing: Black coating or painting

amer bolt material: Alloy steel for machine structural use Surface finishing: Black coating applied

SFF RoHS

SFF(SS)

olt with hexagonal hole material: Alloy steel for machine structural use Surface finishing: Black coating applied Clamping bolt material: Alloy steel for machine structural use Surface finishing: Black coating applied Clamping hub material: \$45C heat-treated material or an equi

nishing: Black coating applied Element material: SUS304 metal disc Collar: S45C or an equivalent

SFF(DS)

Bolt with hexagonal hole material: Alloy steel for machine structural use Surface finishing: Black coating applied mping hub material: S45C heat-trea ted material or an equivalen urface finishing: Black coating applied Clamping bolt material: Alloy steel for machine structural us

urface finishing: Black coating applied Spacer material: S45C heat-treated material or an equivale , Surface finishing: Black coating applied

Element material: SUS304 metal disc Collar: S45C or an equivalent

Applications: NC lathe, machining center, chip mounter, electrical discharge machine

High-precision Clamping Connection The number of mounting bolts has been reduced substantially. You can remarkably reduce mounting time.

Rore ranges Frictional Coupling for Large Diameters This model supports frictional coupling for

[N·m]

[mm]

1000

Surface finishing: Black coating applied

 $\phi 8 \sim 80$

larger-diameter shafts than the previous models.

Tapered shaft Center nut material: S45C or an equivalent

Max. rated torque

Surface finishing: Black coating applied Element material: SUS304 metal disc Collar: S45C or an equivale

face finishing: Black coating applied Bolt with hexagonal hole material: Alloy steel for machine struct

rface finishing: Black coating applied

Pressure bolt material: Alloy steel for machine structural use Surface finishing: Black coating applied

Element material: SUS304 metal disc Collar: S45C or an equivalent Flange material: S45C heat-treated material or an equivaler

Bolt with hexagonal hole material: Alloy steel for machine structural use are bolt material: Alloy steel for machine structural use

Surface finishing: Black coating applied

Application: Machine tool main shaft

SFM(SS)

Bolt with hexagonal hole material: Alloy steel for machine structural use Surface finishing: Black coating applied _Clamping hub material: S45C heat-treated material or an equivalent Surface finishing: Black coating applied lamping bolt material: Alloy steel for machine structural use hishing: Black coating applied nent material: SUS304 metal disc

Max. rated torque

Bore ranges

Pressure bolt material: Alloy steel for machine structural use Surface finishing: Black coating applied

Flange hub material: S45C or an equivalent Surface finishing: Black coating applied

eve material: S45C heat-treated material or an equivalen

Flange material: S45C heat-treated material or an equ

per flange material: S45C heat-treated material or an equivalent Surface finishing: Black coating applied

Flange-mounted

One of the hubs is flange-shaped, allowing mounting on a DD motor, etc

[N·m]

[mm]

1000

 ϕ 12 \sim 80

Collar: S45C or an equivalent

Sleeve material: S45C heat-treated material or an equivalen Surface finishing: Black coating applied

Flance material: \$45C heat-treated material or an equivalen

Bolt with hexagonal hole material: Alloy steel for machine structural use

Element material: SUS304 metal disc

iurface finishing: Black coating applied

Sleeve material: S45C or an equivalent Surface finishing: Black coating applied

essure bolt material: Alloy steel for machine structural use

Surface finishing: Black coating applied

Surface finishing: Black coating applied

SFM

As Machine Tool Main Shaft

Hi-spec model for meeting the high-torque, low-inertia, and high-revolution demands of machine tool main shafts.

Max. Rotation Speed 24000 min⁻¹ High-speed design, balance corrected.

SFH

Max. Rated Torque 8000N·m

This model was developed to transmit a large torque, has an extremely high torsional stiffness, and enables precise shaft rotation and ultra-precise control.

Total Length Can Be Specified

The total length can be specified for a type that connects the middle of the element using a floating shaft.

Customization Cases

SFC Model stainless steel

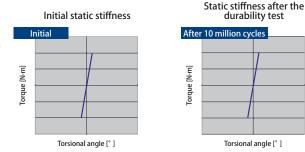
The all-stainless-steel construction provides even better rust-proofing.

SFC Model with slit plate

A slit plate is mounted between the hubs to allow it to be used with position detection sensors such as an encoder and photo sensor.

This is a specification for when the mounting distance between shafts is long. It can be used in applications such as synchronization of gantry mechanism.

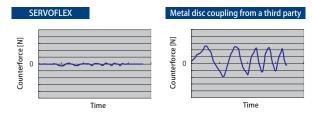
SFF Model For non-excitation brake assemblies



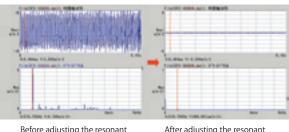
The device design can be made more compact by forming the spline to the outer diameter of the SFF model and using it as the rotor hub for a Miki Pulley non-excitation brake.

FAQ

Q1 What are the durability and aging deterioration of the SERVOFLEX?


We conduct a torsional durability test by applying a load larger than the rated torque. SERVOFLEX passed the test by withstanding the metal fatigue limit of 10 million cycles of repeated load. SERVOFLEX is all made of metal materials so the deterioration is extremely slow, and it is able to transmit torque with high precision for a long period of time.

Torsional characteristics of the SERVOFLEX before and after the durability test with 10 million cycles of repeated load

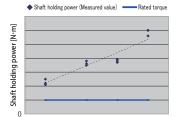

$\mathbf{Q2}$ When a coupling is mounted, the driven shaft runs out. What is the cause?

The runout of a driven shaft caused by a coupling is mainly attributed to the counterforce of the shaft caused by insufficient centering. All of the SERVOFLEX series are assembled using high-precision special jigs to ensure high concentricity of the bores on the left and right. The counterforce of the shaft is extremely small so the runout of the driven shaft can be minimized.

Q3 Noise and vibrations occurred during use of a metal disc coupling. Please tell me how to prevent them.

For a servo motor, noise and vibrations can be suppressed by setting the machine resonance suppression filter to its natural frequency in the control system. For a stepper motor, vibrations can be absorbed and suppressed by changing the rotation speed or using a STEPFLEX coupling with high damping ability.

Before adjusting the resonant filter of the servo motor


After adjusting the resonan filter of the servo motor

MODELS

SFC	
SFS	
SFF	
SFM	
SFH	

Q4 Can enough torque be transmitted using the clamping method for connection to the shaft?

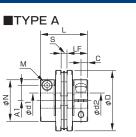
Our torque transmission test uses a sufficient safety factor, so slip of the connection caused by the connection method will not occur when using the rated torque in the catalog. A keyway can be milled into the clamping hub. If you are interested, please refer to P.041 Keyway Milling Option.

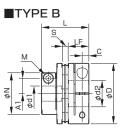
Bore diameter [mm]

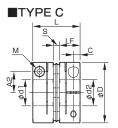
Shaft holding power based on SFC-040DA2 bore diameter

SFC(SA2) Types Single Element Type

Specifications


		Rated		Misalignment		Max. rotation	Torsional	Axial	Moment	
Model	Туре	torque [N•m]	Parallel [mm]	Angular [°]	Axial [mm]	speed [min ⁻¹]	stiffness [N∙m/rad]	stiffness [N/mm]	of inertia [kg•m²]	Mass [kg]
SFC-002SA2	С	0.25	0.01	0.5	± 0.04	10000	190	34	0.06×10^{-6}	0.003
SFC-005SA2	С	0.6	0.02	0.5	± 0.05	10000	500	140	$0.26 imes 10^{-6}$	0.007
SFC-010SA2	С	1	0.02	1	± 0.1	10000	1400	140	0.58×10^{-6}	0.011
SFC-020SA2	С	2	0.02	1	± 0.15	10000	3700	64	2.39×10^{-6}	0.025
SFC-025SA2	С	4	0.02	1	± 0.19	10000	5600	60	3.67×10^{-6}	0.029
	А	5	0.02	1	± 0.2	10000	8000	64	4.07×10^{-6}	0.034
SFC-030SA2	В	5	0.02	1	± 0.2	10000	8000	64	6.09×10^{-6}	0.041
	С	5	0.02	1	± 0.2	10000	8000	64	8.20×10^{-6}	0.049
SFC-035SA2	С	10	0.02	1	± 0.25	10000	18000	112	18.44×10^{-6}	0.082
	А	12	0.02	1	± 0.3	10000	20000	80	16.71 × 10 ⁻⁶	0.077
SFC-040SA2	В	12	0.02	1	± 0.3	10000	20000	80	22.55×10^{-6}	0.085
	С	12	0.02	1	± 0.3	10000	20000	80	29.25×10^{-6}	0.100
	А	25	0.02	1	± 0.4	10000	32000	48	55.71 × 10 ⁻⁶	0.159
SFC-050SA2	В	25	0.02	1	± 0.4	10000	32000	48	76.26 × 10 ⁻⁶	0.177
	С	25	0.02	1	± 0.4	10000	32000	48	99.03 × 10 ⁻⁶	0.206
SFC-055SA2	С	40	0.02	1	± 0.42	10000	50000	43	188.0×10^{-6}	0.314
	А	60	0.02	1	± 0.45	10000	70000	76.4	145.9×10^{-6}	0.283
SFC-060SA2	В	60	0.02	1	± 0.45	10000	70000	76.4	205.0×10^{-6}	0.326
	С	60	0.02	1	± 0.45	10000	70000	76.4	268.6×10^{-6}	0.385
SFC-080SA2	С	100	0.02	1	± 0.55	10000	140000	128	710.6 × 10 ⁻⁶	0.708
SFC-090SA2	С	180	0.02	1	± 0.65	10000	100000	108	1236×10^{-6}	0.946
SFC-100SA2	С	250	0.02	1	± 0.74	10000	120000	111	1891 × 10 ⁻⁶	1.202


ally sp by N ki Pulley a * Check the Standard Bore Diameter list as rated torque may be restricted by the holding power of the shaft connection component.


* Max. rotation speed does not take into account dynamic balance. * Torsional stiffness values given are measured values for the element alone.

* The moment of inertia and mass are measured for the maximum bore diameter.

Dimensions

CAD

Madal	T	d1 [mr	n]	d2 [m	n]	D	DB	N	L	LF	S	A1	A2	с	К	м	Tightening torque
Model	Туре	Min.	Max.	Min.	Max.	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]	Qty - Nominal dia.	[N•m]
SFC-002SA2	С	3	5	3	5	12	12.4	-	12.35	5.9	0.55	-	3.7	1.9	5.6	1-M1.6	$0.23 \sim 0.28$
SFC-005SA2	С	3	6	3	6	16	—	—	16.7	7.85	1	—	4.8	2.5	6.5	1-M2	$0.4 \sim 0.5$
SFC-010SA2	С	3	8	3	8	19	—	—	19.35	9.15	1.05	_	5.8(6)	3.15	8.5	1-M2.5(M2)	1.0~1.1(0.4~0.5)
SFC-020SA2	С	4	10	4	11	26	—	—	23.15	10.75	1.65	—	9.5	3.3	10.6	1-M2.5	$1.0 \sim 1.1$
SFC-025SA2	С	5	14	5	14	29	—	_	23.4	10.75	1.9	-	11	3.3	14.5	1-M2.5	$1.0 \sim 1.1$
	Α	5	10	5	10	34	—	21.6	27.3	12.4	2.5	8	—	3.75	14.5	1-M3	$1.5 \sim 1.9$
SFC-030SA2	В	5	10	Over 10	16	34	—	21.6	27.3	12.4	2.5	8	12.5	3.75	14.5	1-M3	$1.5 \sim 1.9$
	С	Over 10	14	Over 10	16	34	—	—	27.3	12.4	2.5	—	12.5	3.75	14.5	1-M3	1.5 ~ 1.9
SFC-035SA2	с	6	16	6	19	39	_	_	34	15.5	3	-	14	4.5	17	1-M4	3.4 ~ 4.1
	А	8	15	8	15	44	—	29.6	34	15.5	3	11	_	4.5	19.5	1-M4	3.4 ~ 4.1
SFC-040SA2	В	8	15	Over 15	24	44	_	29.6	34	15.5	3	11	17	4.5	19.5	1-M4	3.4 ~ 4.1
	С	Over 15	19	Over 15	24	44	—	—	34	15.5	3	—	17	4.5	19.5	1-M4	3.4 ~ 4.1
	А	8	19	8	19	56	-	38	43.4	20.5	2.4	14.5	-	6	26	1-M5	$7.0 \sim 8.5$
SFC-050SA2	В	8	19	Over 19	30	56	_	38	43.4	20.5	2.4	14.5	22	6	26	1-M5	$7.0 \sim 8.5$
	С	Over 19	25	Over 19	30	56	_	_	43.4	20.5	2.4	_	22	6	26	1-M5	$7.0 \sim 8.5$
SFC-055SA2	С	10	30	10	30	63	_	_	50.6	24	2.6	_	23	7.75	31	1-M6	$14 \sim 15$
	А	11	24	11	24	68	-	46	53.6	25.2	3.2	17.5	-	7.75	31	1-M6	$14 \sim 15$
SFC-060SA2	В	11	24	Over 24	35	68	_	46	53.6	25.2	3.2	17.5	26.5	7.75	31	1-M6	14~15
	С	Over 24	30	Over 24	35	68	_	_	53.6	25.2	3.2	_	26.5	7.75	31	1-M6	14~15
SFC-080SA2	С	18	35	18	40	82	—	—	68	30	8	—	28	9	38	1-M8	$27 \sim 30$
SFC-090SA2	С	25	40	25	45	94	_	_	68.3	30	8.3	-	34	9	42	1-M8	$27 \sim 30$
SFC-100SA2	С	32	45	32	45	104	_	_	69.8	30	9.8	_	39	9	48	1-M8	$27 \sim 30$

* Types A / B / C are automatically specified by Miki Pulley according to the combination of bore diameters you select, and cannot be specified by the customer.

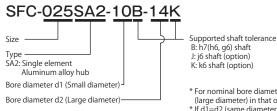
* The DB value is measured assuming that the head of the clamping bot is larger than the external diameter of the bub. * The K dimension is the inner diameter of the element. For d2 dimension exceeding this value, shaft can be inserted only up to LF dimension to the d2 side hub.

* The nominal diameter for the clamping bolt M is equal to the quantity minus the nominal diameter of the screw threads, where the quantity is for a hub on one side. * The figures in parentheses () for the SFC-010 are the values when d1 or d2 is ø8 mm.

SFC(SA2) Types Single Element Type

Standard Bore Diameter

							S	tand	ard (c	ptio	ו) bor	e dia	mete	r, d1/	/d2 [n	nm] a	nd re	stric	ted ra	ated	torqu	ue [N	ŀm]										
No	ominal bore diame	ter	3	4	5	6	б.3	5 7	7 8	9	9.525	10	11	12	13	14	15	16	17	18	19	20	22	24	25	28	30	32	35	38	40	42	45
Shaft	h7 (h6 • g6)	В																															
Shaft tolerance	j6(Option)	J																			\bigcirc		\bigcirc	0		\bigcirc							
ance	k6(Option)	K							С	0						0		\bigcirc			\bigcirc		0	0				0		0			
	SFC-002SA2	d1 d2	•	•	•																												
	SFC-005SA2	d1 d2	•	•	•	•																											
	SFC-010SA2	d1 d2	•	•	•	•																											
	SFC-020SA2	d1 d2		•	•	•		Ţ			•	•																					
Suppo	SFC-025SA2	d1 d2			2.1 2.1	•				•	•	•	•	•	•	•																	
Supported bore diameter for each model	SFC-030SA2	d1 d2			2.8 2.8						•	•	•	•	•	•	•	•															
re dian	SFC-035SA2	d1 d2				5 5	5 5	6	.6 •		•	•	•	•	•	•	•	•	•	•	•												
neter f	SFC-040SA2	d1 d2							9	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•									
or eacl	SFC-050SA2	d1 d2							18 18			22 22	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•						
n mode	SFC-055SA2	d1 d2										31 31	34 34	36 36	38 38	•	•	•	•	•	•	•	•	•	•	•	•						
~	SFC-060SA2	d1 d2											50 50	51 51	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•				
	SFC-080SA2	d1 d2																		•	•	•	•	•	•	•	•	•	•	•	•		
	SFC-090SA2	d1 d2																			_				•	•	•	•	•	•	•	•	•
	SFC-100SA2	d1 d2																										226 226	•	•	•	•	•


* The shaft tolerance for standard bore diameter is h7 (h6 or g6): designation B. However, for a bore diameter of \emptyset 35, the shaft tolerance is $\frac{+0.010}{-0.025}$.

* Shaft tolerances j6/k6: designations J/K are optional, and are only supported for bore diameters marked with \bigcirc .

* Bore diameters marked with • or numbers are supported as the standard bore diameters. Consult Miki Pulley regarding special arrangements which may be possible for other bore diameters. * Bore diameters whose fields contain numbers are restricted in their rated torque by the holding power of the shaft connection component because the bore diameter is small. The numbers indicate the rated

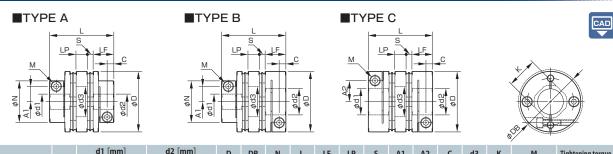
torque [N•m].

* For nominal bore diameter, select d1 (small diameter)-d2 (large diameter) in that order. * If d1=d2 (same diameters), select B, J, and K in that order.

MODELS	
SFC	
SFS	
SFF	
SFM	
SFH	

SFC(DA2) Types Double Element Type

Specifications


		Rated		Misalignment		Max. rotation	Torsional	Axial	Moment	
Model	Туре	torque [N•m]	Parallel [mm]	Angular [°]	Axial [mm]	speed [min ⁻¹]	stiffness [N∙m/rad]	stiffness [N/mm]	of inertia [kg•m²]	Mass [kg]
SFC-002DA2	С	0.25	0.03	0.5(On one side)	± 0.08	10000	95	17	0.07 × 10 ⁻⁶	0.004
SFC-005DA2	С	0.6	0.05	0.5(On one side)	± 0.1	10000	250	70	0.37×10^{-6}	0.010
SFC-010DA2	С	1	0.11	1(On one side)	± 0.2	10000	700	70	0.80×10^{-6}	0.015
SFC-020DA2	С	2	0.15	1(On one side)	± 0.33	10000	1850	32	3.43×10^{-6}	0.035
SFC-025DA2	С	4	0.16	1(On one side)	± 0.38	10000	2800	30	5.26 × 10 ⁻⁶	0.040
	А	5	0.18	1(On one side)	± 0.4	10000	4000	32	7.43×10^{-6}	0.054
SFC-030DA2	В	5	0.18	1(On one side)	± 0.4	10000	4000	32	9.45×10^{-6}	0.060
	С	5	0.18	1(On one side)	± 0.4	10000	4000	32	11.56×10^{-6}	0.068
SFC-035DA2	С	10	0.24	1(On one side)	± 0.5	10000	9000	56	26.93 × 10 ⁻⁶	0.121
	А	12	0.24	1(On one side)	± 0.6	10000	10000	40	29.98×10^{-6}	0.124
SFC-040DA2	В	12	0.24	1(On one side)	±0.6	10000	10000	40	35.82×10^{-6}	0.131
	С	12	0.24	1(On one side)	± 0.6	10000	10000	40	42.52×10^{-6}	0.146
	А	25	0.28	1(On one side)	± 0.8	10000	16000	24	98.34×10^{-6}	0.250
SFC-050DA2	В	25	0.28	1(On one side)	± 0.8	10000	16000	24	118.9×10^{-6}	0.268
	С	25	0.28	1(On one side)	± 0.8	10000	16000	24	141.7 × 10 ⁻⁶	0.298
SFC-055DA2	С	40	0.31	1(On one side)	± 0.84	10000	25000	21.5	261.3×10^{-6}	0.459
	А	60	0.34	1(On one side)	± 0.9	10000	35000	38.2	256.6 × 10 ⁻⁶	0.447
SFC-060DA2	В	60	0.34	1(On one side)	± 0.9	10000	35000	38.2	315.7×10^{-6}	0.489
	С	60	0.34	1(On one side)	± 0.9	10000	35000	38.2	379.3×10^{-6}	0.549
SFC-080DA2	С	100	0.52	1(On one side)	± 1.10	10000	70000	64	1039×10^{-6}	1.037
SFC-090DA2	С	180	0.52	1(On one side)	± 1.30	10000	50000	54	1798×10^{-6}	1.369
SFC-100DA2	С	250	0.55	1(On one side)	± 1.48	10000	60000	55.5	2754 × 10 ⁻⁶	1.739

* Types A / B / C are automatically specified by Miki Pulley according to the combination of bore diameters you select, and cannot * Check the Standard Bore Diameters as rated torque may be restricted by the holding power of the shaft connection component.

* Max. rotation speed does not take into account dynamic balance. * Torsional stiffness values given are measured values for the element alone.

* The moment of inertia and mass are measured for the maximum bore diameter.

Dimensions

Model	Turne	d1 [mr	m]	d2 [mr	n]	D	DB	Ν	L	LF	LP	S	A1	A2	с	d3	К	м	Tightening torque
Model	Туре	Min.	Max.	Min.	Max.	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]	Qty - Nominal dia.	[N•m]
SFC-002DA2	С	3	5	3	5	12	12.4	—	15.7	5.9	2.8	0.55	—	3.7	1.9	5.2	5.6	1-M1.6	$0.23 \sim 0.28$
SFC-005DA2	С	3	6	3	6	16	—	—	23.2	7.85	5.5	1	—	4.8	2.5	6.5	6.5	1-M2	$0.4 \sim 0.5$
SFC-010DA2	С	3	8	3	8	19	—	_	25.9	9.15	5.5	1.05	_	5.8(6)	3.15	8.5	8.5	1-M2.5(M2)	1.0~1.1(0.4~0.5)
SFC-020DA2	С	4	10	4	11	26	—	—	32.3	10.75	7.5	1.65	—	9.5	3.3	10.6	10.6	1-M2.5	1.0 ~ 1.1
SFC-025DA2	С	5	14	5	14	29	—	—	32.8	10.75	7.5	1.9	—	11	3.3	15	14.5	1-M2.5	$1.0 \sim 1.1$
	Α	5	10	5	10	34	—	21.6	37.8	12.4	8	2.5	8	—	3.75	15	14.5	1-M3	$1.5 \sim 1.9$
SFC-030DA2	В	5	10	Over 10	16	34	—	21.6	37.8	12.4	8	2.5	8	12.5	3.75	15	14.5	1-M3	$1.5 \sim 1.9$
	С	Over 10	14	Over 10	16	34	—	—	37.8	12.4	8	2.5	—	12.5	3.75	15	14.5	1-M3	$1.5 \sim 1.9$
SFC-035DA2	С	6	16	6	19	39	-	-	48	15.5	11	3	-	14	4.5	17	17	1-M4	$3.4 \sim 4.1$
	А	8	15	8	15	44	—	29.6	48	15.5	11	3	11	—	4.5	20	19.5	1-M4	$3.4 \sim 4.1$
SFC-040DA2	В	8	15	Over 15	24	44	—	29.6	48	15.5	11	3	11	17	4.5	20	19.5	1-M4	3.4 ~ 4.1
	С	Over 15	19	Over 15	24	44	—	—	48	15.5	11	3	—	17	4.5	20	19.5	1-M4	$3.4 \sim 4.1$
	Α	8	19	8	19	56	—	38	59.8	20.5	14	2.4	14.5	—	6	26	26	1-M5	$7.0 \sim 8.5$
SFC-050DA2	В	8	19	Over 19	30	56	—	38	59.8	20.5	14	2.4	14.5	22	6	26	26	1-M5	$7.0 \sim 8.5$
	С	Over 19	25	Over 19	30	56	—	—	59.8	20.5	14	2.4	—	22	6	26	26	1-M5	$7.0 \sim 8.5$
SFC-055DA2	С	10	30	10	30	63	—	—	68.7	24	15.5	2.6	—	23	7.75	31	31	1-M6	$14 \sim 15$
	Α	11	24	11	24	68	—	46	73.3	25.2	16.5	3.2	17.5	—	7.75	31	31	1-M6	$14 \sim 15$
SFC-060DA2	В	11	24	Over 24	35	68	—	46	73.3	25.2	16.5	3.2	17.5	26.5	7.75	31	31	1-M6	$14 \sim 15$
	С	Over 24	30	Over 24	35	68	_	_	73.3	25.2	16.5	3.2	—	26.5	7.75	31	31	1-M6	$14 \sim 15$
SFC-080DA2	С	18	35	18	40	82	—	—	98	30	22	8	—	28	9	40	38	1-M8	$27 \sim 30$
SFC-090DA2	С	25	40	25	45	94	—	_	98.6	30	22	8.3	_	34	9	47	42	1-M8	$27 \sim 30$
SFC-100DA2	С	32	45	32	45	104	—	—	101.6	30	22	9.8	—	39	9	50	48	1-M8	$27 \sim 30$

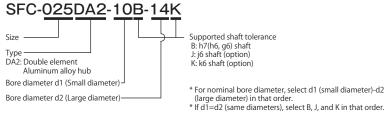
* Types A / B / C are automatically specified by Miki Pulley according to the combination of bore diameters you select, and cannot be specified by the customer. * The øDB value is measured assuming that the head of the clamping bolt is larger than the external diameter of the hub.

* The Kdimension is the inner diameter of the element. For d2 dimension exceeding this value, shaft can be inserted only up to LF dimension to the d2 side hub. * The nominal diameter for the clamping bolt M is equal to the quantity minus the nominal diameter of the screw threads, where the quantity is for a hub on one side. * The figures in parentheses () for the SFC-010 are the values when d1 or d2 is ø8 mm.

SFC(DA2) Types Double Element Type

Standard Bore Diameter

							S	tand	lard (opti	on)	bore	diar	netei	r, d1/	d2 [n	nm] a	nd re	stric	ted r	ated	torq	ue [N	ŀm]										
N	ominal bore diame	ter	3	4	5	6	6 .3	5 7	7 8	8	9	9.525	10	11	12	13	14	15	16	17	18	19	20	22	24	25	28	30	32	35	38	40	42	45
Shaft	h7 (h6 • g6)	В																																
Shaft tolerance	j6(Option)	J																				\bigcirc		0	0		0							
ance	k6(Option)	K							()	0						\circ		\circ			0		0	0				0		0			
	SFC-002DA2	d1	۲	۲	•																													
	STO COLDAL	d2	٠	٠	•																													
	SFC-005DA2	d1	٠	•	•	•																												
	0.000000	d2																																
	SFC-010DA2	d1	٠	•	•	•																												
	0.000000	d2	٠	•	•	•																												
	SFC-020DA2	d1		•	•	•	•				•	•	•																					
S		d2				•																												
	SFC-025DA2	d1			2.1	•	•				•		•	•	•	•	•																	
Ď T		d2			2.1	•					•	•	•	•	•	•	•																	
ed	SFC-030DA2	d1			2.8						•	•	•	•	•	•	•	-	-															
ore		d2			2.8								•	•		•			•															
di	SFC-035DA2	d1				5	5	6	.6																									
me		d2				5	5	6	.6																									
eter	SFC-040DA2	d1								9				•			•					•												
Supported bore diameter for each model		d2 d1								9	-	-	- 22																					
.ea	SFC-050DA2	d1 d2									20	22	22		-					-														
5		d2 d1								8	20	22	22 31	34	36	20																		
noc	SFC-055DA2	d1 d2											31	34	36	20		-	-	-							-							
lel		d1											21	54 50	51	30																		
	SFC-060DA2	d2												50	51											-								
		d1												50	51	-		-	-	-														
	SFC-080DA2	d2																																
		d1																																
	SFC-090DA2	d2																																
		d1																								-	-	-	226					
	SFC-100DA2	d2																											226					


* The shaft tolerance for standard bore diameter is h7 (h6 or g6): designation B. However, for a bore diameter of \emptyset 35, the shaft tolerance is $\frac{+0.010}{-0.025}$.

* Shaft tolerances j6/k6: designations J/K are optional, and are only supported for bore diameters marked with \bigcirc .

* Bore diameters marked with • or numbers are supported as the standard bore diameters. Consult Miki Pulley regarding special arrangements which may be possible for other bore diameters. * Bore diameters whose fields contain numbers are restricted in their rated torque by the holding power of the shaft connection component because the bore diameter is small. The numbers indicate the rated

torque [N•m].

MODELS	
SFC	
SFS	
SFF	
SFM	
SFH	

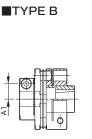
SFC(SA2) Types Single Element Type

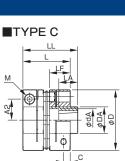
Tapered shaft supported **Options**

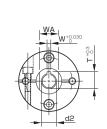
Allows coupling via a clamping hub when a taper adapter is mounted on the tapered shaft of a servo motor.

Specifications

		Rated		Misalignmen	t	Max. rotation	Torsional	Axial	Moment	Mass
Model	Туре	torque [N•m]	Parallel [mm]	Angular [°]	Axial [mm]	speed [min ⁻¹]	stiffness [N∙m/rad]	stiffness [N/mm]	of inertia [kg•m²]	[kg]
SFC-040SA2- 🗆 B-11BC	В	12	0.02	1	± 0.3	10000	20000	80	26.58×10^{-6}	0.131
SFC-040SA2- D B-11BC	С	12	0.02	1	± 0.3	10000	20000	80	33.28 × 10 ⁻⁶	0.146
	В	25	0.02	1	± 0.4	10000	32000	48	82.91 × 10 ⁻⁶	0.240
SFC-050SA2- 🗌 B-11BC	С	25	0.02	1	± 0.4	10000	32000	48	103.5×10^{-6}	0.258
	В	25	0.02	1	± 0.4	10000	32000	48	88.72 × 10 ⁻⁶	0.271
SFC-050SA2- 🗌 B-14BC	С	25	0.02	1	± 0.4	10000	32000	48	111.5 × 10 ⁻⁶	0.301
SFC-050SA2- 🗆 B-16BC	В	25	0.02	1	± 0.4	10000	32000	48	95.44 × 10 ⁻⁶	0.309
SFC-050SA2 B-16BC	С	25	0.02	1	± 0.4	10000	32000	48	118.2 × 10 ⁻⁶	0.338
SFC-055SA2- 🗌 B-14BC	С	40	0.02	1	± 0.42	10000	50000	43	201.1 × 10 ⁻⁶	0.409
SFC-055SA2- 🗆 B-16BC	С	40	0.02	1	± 0.42	10000	50000	43	207.8 × 10 ⁻⁶	0.446
	В	60	0.02	1	± 0.45	10000	70000	76.4	228.7 × 10 ⁻⁶	0.475
SFC-060SA2- 🗌 B-16BC	С	60	0.02	1	± 0.45	10000	70000	76.4	287.8 × 10 ⁻⁶	0.517


* Types B / C are automatically specified by Miki Pulley according to the bore diameter you select, and cannot be specified by the customer. * Check the Standard Bore Diameters as rated torque may be restricted by the holding power of the shaft connection component.


* Max. rotation speed does not take into account dynamic balance.


* Torsional stiffness values given are measured values for the element alone.

* The moment of inertia and mass are measured for the maximum bore diameter

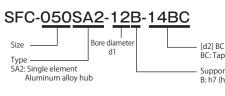
Dimensions

Model	d2 [mm]	W [mm]	T [mm]	WA [mm]	LA [mm]	dA [mm]	DA [mm]	LL [mm]	D [mm]	L [mm]	LF [mm]	C [mm]	A1 [mm]	A2 [mm]	M Qty - Nominal dia.
SFC-040SA2- 🗌 B-11BC	11	4	12.2	18	16	17	22	44	44	34	15.5	4.5	11	17	1-M4
SFC-050SA2- 🗆 B-11BC	11	4	12.2	18	16	17	22	48.4	56	43.4	20.5	6	14.5	22	1-M5
SFC-050SA2- B-14BC	14	4	15.1	24	19	22	28	53.4	56	43.4	20.5	6	14.5	22	1-M5
SFC-050SA2- 🗆 B-16BC	16	5	17.3	24	29	26	30	63.4	56	43.4	20.5	6	14.5	22	1-M5
SFC-055SA2- 🗆 B-14BC	14	4	15.1	24	19	22	28	56.6	63	50.6	24	7.75	—	23	1-M6
SFC-055SA2- 🗆 B-16BC	16	5	17.3	24	29	26	30	66.6	63	50.6	24	7.75	—	23	1-M6
SFC-060SA2- 🗆 B-16BC	16	5	17.3	24	29	26	30	69.6	68	53.6	25.2	7.75	17.5	26.5	1-M6

* For other dimensions, see dimensions for single element type SFC(SA2).

Standard Bore Diameter

					5	Standard	d (optior) bore d	liamete	r, d1 [mn	n] and re	estricted	rated to	orque [N	l∙m]						
No	minal bore diamet	er	8	9	9.525	10	11	12	13	14	15	16	17	18	19	20	22	24	25	28	30
Shaf	h7 (h6 • g6)	В																			
Shaft tolerance	j6 (Option)	J													0		0	0		0	
ance	k6(Option)	Κ	0	0						0		0			0		0	0			
Ś	SFC-040SA2		9	•		•	•	•	•	•	•	•	•								
orted b	SFC-050SA2		18	20	22	22															
Supported bore diam	SFC-055SA2					31	34	36	38	•	•	•	•	•	•	•	•	•	•	•	
neter	SFC-060SA2						50	51													


* The shaft tolerance for standard bore diameter is h7 (h6 or d6); designation B.

* Shaft tolerances j6/k6: designations J/K are optional, and are only supported for bore diameters marked with 🔾 .

* Bore diameters marked with
or numbers are supported as the standard bore diameters. Consult Miki Pulley regarding special arrangements which may be possible for other bore diameters.
* Bore diameters whose fields contain numbers are restricted in their rated torque by the holding power of the shaft connection component because the bore diameter is small. The numbers indicate the rated

torque [N•m].

BC: Taper adapter *Select d2 for BC. Supported shaft tolerance B: h7 (h6, g6), (Option K: k6, J: j6)

CAE

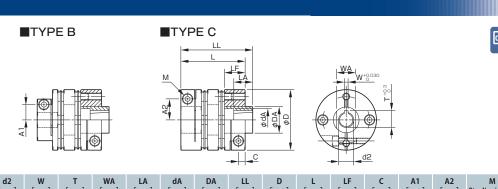
SFC(DA2) Types Double Element Type

Options Tapered shaft supported

Allows coupling via a clamping hub when a taper adapter is mounted on the tapered shaft of a servo motor.

Specifications

Specifications										
		Rated		Misalignment		Max. rotation	Torsional	Axial	Moment	
Model	Туре	torque [N•m]	Parallel [mm]	Angular [°]	Axial [mm]	speed [min ⁻¹]	stiffness [N•m/rad]	stiffness [N/mm]	of inertia [kg•m²]	Mass [kg]
SFC-040DA2- 🗆 B-11BC	В	12	0.24	1(On one side)	± 0.6	10000	10000	40	39.42 × 10 ⁻⁶	0.180
SFC-040DA2- D B-11BC	С	12	0.24	1(On one side)	± 0.6	10000	10000	40	46.12 × 10 ⁻⁶	0.195
	В	25	0.28	1(On one side)	± 0.8	10000	16000	24	125.5×10^{-6}	0.331
SFC-050DA2- 🗌 B-11BC	С	25	0.28	1(On one side)	± 0.8	10000	16000	24	146.1 × 10 ⁻⁶	0.349
SFC-050DA2- 🗌 B-14BC	В	25	0.28	1(On one side)	± 0.8	10000	16000	24	131.1 × 10 ⁻⁶	0.362
SFC-050DA2- 🗆 B-14BC	С	25	0.28	1(On one side)	± 0.8	10000	16000	24	154.1 × 10 ⁻⁶	0.392
SFC-050DA2- 🗆 B-16BC	В	25	0.28	1(On one side)	± 0.8	10000	16000	24	138.1 × 10 ⁻⁶	0.400
SFC-050DA2- C B-16BC	С	25	0.28	1(On one side)	± 0.8	10000	16000	24	160.8×10^{-6}	0.430
SFC-055DA2- 🗌 B-14BC	С	40	0.31	1(On one side)	± 0.84	10000	25000	21.5	274.0 × 10 ⁻⁶	0.530
SFC-055DA2- 🗌 B-16BC	С	40	0.31	1(On one side)	± 0.84	10000	25000	21.5	280.5×10^{-6}	0.567
SFC-060DA2- 🗌 B-16BC	В	60	0.34	1(On one side)	± 0.9	10000	35000	38.2	339.4 × 10 ⁻⁶	0.638
3FC-000DAZ B-16BC	С	60	0.34	1(On one side)	± 0.9	10000	35000	38.2	398.5 × 10 ⁻⁶	0.681


* Types B / C are automatically specified by Miki Pulley according to the bore diameter you select, and cannot be specified by the customer. * Check the Standard Bore Diameters as rated torque may be restricted by the holding power of the shaft connection component.

* Max, rotation speed does not take into account dynamic balance.

* Torsional stiffness values given are measured values for the element alone.

* The moment of inertia and mass are measured for the maximum bore diameter.

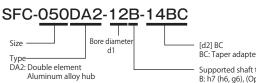
Dimensions

Model	[mm]	Qty - Nominal dia.													
SFC-040DA2- 🗆 B-11BC	11	4	12.2	18	16	17	22	58	44	48	15.5	4.5	11	17	1-M4
SFC-050DA2- 🗆 B-11BC	11	4	12.2	18	16	17	22	64.8	56	59.8	20.5	6	14.5	22	1-M5
SFC-050DA2- 🗌 B-14BC	14	4	15.1	24	19	22	28	69.8	56	59.8	20.5	6	14.5	22	1-M5
SFC-050DA2- 🗆 B-16BC	16	5	17.3	24	29	26	30	79.8	56	59.8	20.5	6	14.5	22	1-M5
SFC-055DA2- 🗆 B-14BC	14	4	15.1	24	19	22	28	74.4	63	68.7	24	7.75	-	23	1-M6
SFC-055DA2- 🗆 B-16BC	16	5	17.3	24	29	26	30	84.7	63	68.7	24	7.75	—	23	1-M6
SFC-060DA2- 🗌 B-16BC	16	5	17.3	24	29	26	30	89.3	68	73.3	25.2	7.75	17.5	26.5	1-M6

* For other dimensions, see dimensions for double element type SFC(DA2).

Standard Bore Diameter

					S	tandard	l (optior	n) bore c	liamete	r, d1 [mr	n] and r	estricted	I rated t	orque [N	l∙m]						
No	ominal bore diamet	er	8	9	9 .525	10	11	12	13	14	15	16	17	18	19	20	22	24	25	28	30
Shaf	h7 (h6 • g6)	В																			
Shaft tolerance	j6(Option)	J													0		0	0		0	
ance	k6(Option)	K	0	0						0		0			0		0	0			
Subb	SFC-040DA2		9		•	•	•	•	•	•	•	•	•	•	•						
nted b	SFC-050DA2		18	20	22	22															
Supported bore diam	SFC-055DA2					31	34	36	38	•		•	•	•	•	•	•	•	•	•	
neter	SFC-060DA2						50	51													


* The shaft tolerance for standard bore diameter is h7 (h6 or g6): designation B.

* Shaft tolerances j6/k6: designations J/K are optional, and are only supported for bore diameters marked with O.

* Bore diameters whose fields contain numbers are supported as the standard bore diameters. Consult Mike Ulley regarding special arrangements which may be possible for other bore diameters. * Bore diameters whose fields contain numbers are restricted in their rated torque by the holding power of the shaft connection component because the bore diameter is small. The numbers indicate the rated

How to Place an Order

toraue [N•m].

BC: Taper adapter *Select d2 for BC.

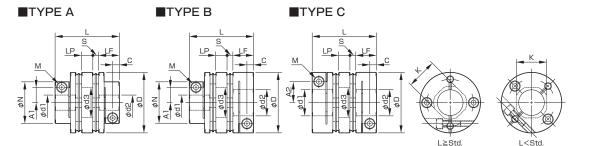
· Supported shaft tolerance B: h7 (h6, g6), (Option K: k6, J: j6)

MOD	ELS	5									
SFC											
SFS			 		 •						
SFF											
SFM											
SFH											

For length-specified special order parts **Options**

SFC(DA2) type spacer length can be changed to attain the necessary distance between shafts. Specify the length in 1 mm units.

Specifications


Specifi	cations	•									
		Deted		Misal	ignment		Max.	Mon	nent	Ma	
Model	Туре	Rated torque [N•m]	Paralle	el[mm]	Angular [°]	Axial [mm]	rotation speed	of in [kg·	ertia •m²]	[k	
		[really	Min. L	Max. L	1 1	[11111]	[min - 1]	Min. L	Max. L	Min. L	Max. L
SFC-005DA2	С	0.6	0.03	0.20	0.5(On one side)	± 0.1	10000	0.33×10^{-6}	0.62×10^{-6}	0.009	0.017
SFC-010DA2	С	1	0.08	0.44	1(On one side)	± 0.2	10000	0.72 × 10 ⁻⁶	1.38×10^{-6}	0.014	0.026
SFC-020DA2	С	2	0.10	0.46	1(On one side)	± 0.33	10000	3.02×10^{-6}	5.30×10^{-6}	0.031	0.054
SFC-025DA2	С	4	0.09	0.46	1(On one side)	± 0.38	10000	4.55×10^{-6}	7.95 × 10 ⁻⁶	0.036	0.061
	A	5	0.11	0.48	1(On one side)	± 0.4	10000	6.09 × 10 ⁻⁶	12.80×10^{-6}	0.046	0.085
SFC-030DA2	В	5	0.11	0.48	1(On one side)	± 0.4	10000	8.11 × 10 ⁻⁶	14.82×10^{-6}	0.053	0.091
	С	5	0.11	0.48	1(On one side)	± 0.4	10000	10.22×10^{-6}	16.93 × 10 ⁻⁶	0.061	0.099
SFC-035DA2	С	10	0.15	0.54	1(On one side)	± 0.5	10000	23.85×10^{-6}	35.97 × 10 ⁻⁶	0.108	0.161
	А	12	0.15	0.54	1(On one side)	± 0.6	10000	25.06×10^{-6}	44.76×10^{-6}	0.107	0.174
SFC-040DA2	В	12	0.15	0.54	1(On one side)	± 0.6	10000	30.89 × 10 ⁻⁶	50.62 × 10 ⁻⁶	0.116	0.182
	С	12	0.15	0.54	1(On one side)	± 0.6	10000	37.58×10^{-6}	57.31 × 10 ⁻⁶	0.130	0.197
	А	25	0.16	0.63	1(On one side)	± 0.8	10000	77.42 × 10 ⁻⁶	144.3×10^{-6}	0.205	0.347
SFC-050DA2	В	25	0.16	0.63	1(On one side)	± 0.8	10000	97.97 × 10 ⁻⁶	164.8×10^{-6}	0.225	0.365
	С	25	0.16	0.63	1(On one side)	± 0.8	10000	120.8×10^{-6}	187.6 × 10 ⁻⁶	0.252	0.394
SFC-055DA2	С	40	0.16	0.60	1(On one side)	± 0.84	10000	226.8 × 10 ⁻⁶	325.0×10^{-6}	0.378	0.538
	А	60	0.19	0.63	1(On one side)	± 0.9	10000	210.8 × 10 ⁻⁶	340.1 × 10 ⁻⁶	0.382	0.567
SFC-060DA2	В	60	0.19	0.63	1(On one side)	± 0.9	10000	269.9×10^{-6}	399.2 × 10 ⁻⁶	0.424	0.609
	С	60	0.19	0.63	1(On one side)	± 0.9	10000	333.5×10^{-6}	462.8×10^{-6}	0.484	0.669

* Types A / B / C are automatically specified by Miki Pulley according to the combination of bore diameters you select, and cannot be specified by the customer. * Check the Standard Bore Diameters for SFC(DA2) as there may be limitations on the rated torque caused by the holding power of the coupling shaft section.

* Max. rotation speed does not take into account dynamic balance. * The moment of inertia and mass are measured for the maximum bore diameter.

* See Specifications for SFC(DA2) for stiffness values.

Dimensions

L≧Std.

Model	Turno	d1 [mr	n]	d2 [mi	n]	D	Ν	l	L [mm]	LF	S	A1	A2	с	d3	К	м	Tightening torque
Model	Туре	Min.	Max.	Min.	Max.	[mm]	[mm]	Std.	Min.	Max.	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]	Qty - Nominal dia.	[N•m]
SFC-005DA2	С	3	6	3	6	16	-	23.2	21	40	7.85	1	_	4.8	2.5	6.5	6.5	1-M2	$0.4 \sim 0.5$
SFC-010DA2	С	3	8	3	8	19	—	25.9	24	45	9.15	1.05	—	5.8(6)	3.15	8.5	8.5	1-M2.5(M2)	1.0~1.1(0.4~0.5)
SFC-020DA2	С	4	10	4	11	26	—	32.3	29	50	10.75	1.65	_	9.5	3.3	10.6	10.6	1-M2.5	$1.0 \sim 1.1$
SFC-025DA2	С	5	14	5	14	29	—	32.8	29	50	10.75	1.9	—	11	3.3	15	14.5	1-M2.5	$1.0 \sim 1.1$
	А	5	10	5	10	34	21.6	37.8	34	55	12.4	2.5	8	_	3.75	15	14.5	1-M3	$1.5 \sim 1.9$
SFC-030DA2	В	5	10	Over 10	16	34	21.6	37.8	34	55	12.4	2.5	8	12.5	3.75	15	14.5	1-M3	$1.5 \sim 1.9$
	С	Over 10	14	Over 10	16	34	_	37.8	34	55	12.4	2.5	_	12.5	3.75	15	14.5	1-M3	$1.5 \sim 1.9$
SFC-035DA2	С	6	16	6	19	39	—	48	43	65	15.5	3	—	14	4.5	17	17	1-M4	3.4 ~ 4.1
	А	8	15	8	15	44	29.6	48	43	65	15.5	3	11	_	4.5	20	19.5	1-M4	$3.4 \sim 4.1$
SFC-040DA2	В	8	15	Over 15	24	44	29.6	48	43	65	15.5	3	11	17	4.5	20	19.5	1-M4	$3.4 \sim 4.1$
	С	Over 15	19	Over 15	24	44	_	48	43	65	15.5	3	_	17	4.5	20	19.5	1-M4	3.4 ~ 4.1
	А	8	19	8	19	56	38	59.8	53	80	20.5	2.4	14.5	—	6	26	26	1-M5	$7.0 \sim 8.5$
SFC-050DA2	В	8	19	Over 19	30	56	38	59.8	53	80	20.5	2.4	14.5	22	6	26	26	1-M5	$7.0 \sim 8.5$
	С	Over 19	25	Over 19	30	56	_	59.8	53	80	20.5	2.4	_	22	6	26	26	1-M5	$7.0 \sim 8.5$
SFC-055DA2	с	10	30	10	30	63	-	68.7	60	85	24	2.6	_	23	7.75	31	31	1-M6	$14 \sim 15$
	А	11	24	11	24	68	46	73.3	65	90	25.2	3.2	17.5	—	7.75	31	31	1-M6	$14 \sim 15$
SFC-060DA2	В	11	24	Over 24	35	68	46	73.3	65	90	25.2	3.2	17.5	26.5	7.75	31	31	1-M6	$14 \sim 15$
	С	Over 24	30	Over 24	35	68	—	73.3	65	90	25.2	3.2	—	26.5	7.75	31	31	1-M6	$14 \sim 15$

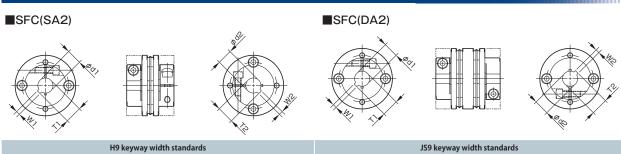
* Types A / B / C are automatically specified by Miki Pulley according to the combination of bore diameters you select, and cannot be specified by the customer. * The nominal diameter for the clamping bolt M is equal to the quantity minus the nominal diameter of the screw threads, where the quantity is for a hub on one side.

* The figures in parentheses () for the SFC-010 are the values when d1 or d2 is ø8 mm. * Compatible lengths L range from the minimum L dimension to the maximum L dimension shown in the above table. Specify in 1 mm units.

* When the L dimension is shorter than the standard, the left/right clamping bolt phases will be off by 45° * Check Standard Bore Diameters for SFC(DA2) for the standard bore diameters.

How to Place an Order

SFC-040DA2-14B-15B-L60


Size Bore diameter d1 Bore diameter d (Small diameter) (Large diameter Type DA2: Double element Aluminum allov hub

Length designation % Specify the L dimension in 1 mm increments.

Options For keyway milling applications

If you are using a keyed shaft, we can mill a keyway in the clamping hub to your specifications.

Keyway milling standard

			115	ncymuy m	aun	Jun	aurus										ncy.	iu, iii	acii	Ju	maa	as		
Nominal b	ore dia.	Bore dia.	Keyway width	Keyway height	Nom	inal bo	re dia.	Bore dia.	Keyway width	Keyway height			bore o	dia.	Bore dia.	Keyway width	Kevwa	v height		inal l	bore di	a. Bore di	a. Keyway width	Keyway height
tdia	olerance j6 k6	d1 • d2 [mm]	W1 • W2 [mm]	T1 • T2 [mm]	Shaftdia			d1 • d2 [mm]	W1 • W2 [mm]	T1 • T2 [mm]	Shaft diameter	Shaf h7	t tolera j6	nce	d1 • d2 [mm]		T1	• T2 nm]	tdia		toleran j6 k	e d1 • d	2 W1 • W2	T1 • T2 [mm]
8 BH	— кн	8	3 + 0.025	9.4 $^{+0.3}_{0}$	20	BH -		20	$6 \begin{array}{c} + 0.030 \\ 0 \end{array}$	$22.8 {}^{+ 0.3}_{0}$	8	BJ	— I	КJ	8	3 ± 0.0125	9.4	+ 0.3	20 I	BJ		- 20	6 ± 0.0150	22.8 ^{+ 0.3}
9 BH	— кн	9	3 ^{+ 0.025}	$10.4 {}^{+}_{0.3}$	22	BH J	нкн	22	6 ^{+ 0.030}	24.8 ^{+ 0.3}	9	BJ	- 1	КJ	9	3 ± 0.0125	10.4	+ 0.3	22 I	BJ	Л К	J 22	6 ±0.0150	24.8 ^{+ 0.3} ₀
10 BH		10	3 + 0.025	$11.4^{+0.3}_{0}$	24	BH J	н кн	24	$8 \begin{array}{c} + 0.036 \\ 0 \end{array}$	$27.3 {}^{+}_{0.3}$	10	BJ	_		10	3 ± 0.0125	11.4	+ 0.3	24 I	BJ	Л К	J 24	8 ±0.0180	27.3 ^{+ 0.3}
11 BH		11	4 + 0.030	12.8 ^{+ 0.3}	25	BH -		25	$8 \begin{array}{c} + 0.036 \\ 0 \end{array}$	28.3 + 0.3	11	BJ	_	_	11	4 ± 0.0150	12.8	+ 0.3	25 I	BJ		- 25	8 ± 0.0180	28.3 ^{+ 0.3}
12 BH		12	$4 \begin{array}{c} + 0.030 \\ 0 \end{array}$	$13.8 {}^{+}_{0.3}_{0}$	28	BH J	н —	28	$8 \begin{array}{c} + 0.036 \\ 0 \end{array}$	$31.3 {}^{+}_{0.3}$	12	BJ	—		12	4 ± 0.0150	13.8	+ 0.3	28 I	BJ	JN –	- 28	8 ± 0.0180	$31.3 {}^{+ 0.3}_{0}$
13 BH		13	$5 \begin{array}{c} + 0.030 \\ 0 \end{array}$	$15.3 {}^{+}_{0.3}_{0}$	30	BH -		30	8 + 0.036	33.3 ^{+ 0.3}	13	BJ	_	—	13	5 ± 0.0150	15.3	+ 0.3	30 I	BJ		- 30	8 ± 0.0180	33.3 ^{+ 0.3}
14 BH	— кн	14	$5 ^{+0.030}_{0}$	$16.3 {}^{+}_{0.3}$	32	BH –	- кн	32	$10^{+0.036}_{0}$	$35.3 {}^{+}_{0.3}$	14	BJ	— I	кJ	14	5 ± 0.0150	16.3	+ 0.3	32 I	BJ	— к	J 32	10 ± 0.0180	35.3 ^{+ 0.3}
15 BH		15	$5 ^{+0.030}_{0}$	17.3 ^{+ 0.3}	35	BH -		35	$10^{+0.036}_{0}$	38.3 ^{+ 0.3}	15	BJ	_	_	15	5 ± 0.0150	17.3	+ 0.3	35 I	BJ		- 35	10 ± 0.0180	38.3 ^{+ 0.3}
16 BH	— КН	16	$5 ^{+0.030}_{0}$	$18.3 {}^{+}_{0.3}_{0}$	38	BH -	- KH	38	$10^{+0.036}_{0}$	$41.3 {}^{+ 0.3}_{0}$	16	BJ	— I	кJ	16	5 ± 0.0150	18.3	+ 0.3	38 I	BJ	— к	J 38	10 ± 0.0180	$41.3 {}^{+ 0.3}_{0}$
17 BH		17	5 + 0.030	19.3 ^{+ 0.3}	40	BH -		40	$12^{+0.043}_{0}$	$43.3 {}^{+ 0.3}_{0}$	17	BJ	_		17	5 ± 0.0150	19.3	+ 0.3	40 I	BJ		- 40	12 ± 0.0215	43.3 ^{+ 0.3}
18 BH		18	6 ^{+ 0.030}	20.8 ^{+ 0.3}	42	BH -		42	$12^{+0.043}_{0}$	$45.3 {}^{+}_{0.3}$	18	ВJ	_	_	18	6 ± 0.0150	20.8	+ 0.3	42 I	BJ		- 42	12 ± 0.0215	45.3 ^{+ 0.3}
19 BH .	н кн	19	6 ^{+ 0.030}	21.8 ^{+ 0.3} ₀	45	BH -		45	$14 {}^{+ 0.043}_{0}$	48.8 ^{+ 0.3}	19	BJ	J1 I	КJ	19	6 ±0.0150	21.8	+ 0.3	45 I	BJ		- 45	14 ± 0.0215	48.8 ^{+ 0.3}
* We can	also ha	ndle stand	lards not listed	d above. Con	sult I	Miki P	ulley.																	

Standard Bore Diameter

						Star	ndard (optior	n) bore	e diam	eter, d	1/d2 [ı	nm] aı	nd rest	ricted	rated	torque	[N·m]]							
	ominal bore diame	ter	8	9	10	11	12	13	14	15	16	17	18	19	20	22	24	25	28	30	32	35	38	40	42	45
Shaft tolerance	h7 (h6 • g6)	В																								
ttole	j6(Option)	J												0		0	0		0							
ance	k6(Option)	Κ	0	0					0		0			0		0	0				0		0			
	SFC-025	d1	•	•	•	۲	•	•	•																	
		d2	•	•	•	•	•	•	•																	
	SFC-030	d1	•	•	•	•	•	•	•	-																
2		d2																								
Sunnorted hore diameter for each model	SFC-035	d1 d2										•	•	•												
1		d1	9	•	•	•	•	•	•	•	•	•	•	•												
ह	SFC-040	d2	9				٠	•	٠	•	٠	٠	•	•	٠	٠	•									
	SFC-050	d1	18	20	22	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠								
	SFC-050	d2	18	20	22																					
n ot	SFC-055	d1			31	34	36	38																		
	5FC-055	d2			31	34	36	38																		
	SFC-060	d1				50	51	٠	•	•	٠	•	٠	٠	•	٠	•	٠	•	•						
2	51 0 000	d2				50	51																			
3	SFC-080	d1											٠	٠	٠	٠	٠	٠		٠	•	٠				
5	0.0000	d2																								
	SFC-090	d1																•	•	•	•	•	•	•	-	_
		d2																•	•	•	•	•	•	•		•
	SFC-100	d1																			226	•	•	•	•	•
		d2																			226					

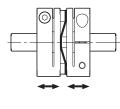
* The shaft tolerance for standard bore diameter is h7 (h6 or g6): designation B. However, for a bore diameter of ø35, the shaft tolerance is +0.010 -0.025

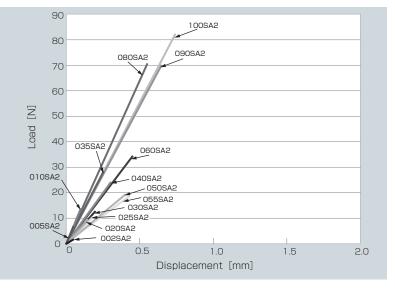
* Bore diameters whose fields contain numbers are restricted in their rated torque by the holding power of the shaft connection component because the bore diameters. * Bore diameters whose fields contain numbers are restricted in their rated torque by the holding power of the shaft connection component because the bore diameters is mall. The numbers indicate the rated

torque [N•m].

SFC-<u>060SA2</u>-<u>12BH</u>-<u>14KJ</u> How to Place an Order Bore diameter d1 Bore diameter d2 Size (Small diameter) (Large diameter) Type SA2: Single element DA2: Double element

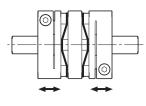
Affixing method KJ: k6 shaft + JS9 keyway * For nominal bore diameter, select d1 (small diameter) -d2 (large diameter) in that order. If d1=d2 (same diameters), select B, J, and K in that order. B · J · K · BH · BJ · JH · JJ · KH · KJ

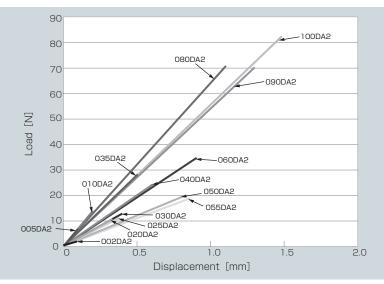

MODELS SFC SFS SFF SFM SFH

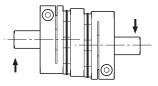

Affixing method B•. BH: h7 (h6, g6) shaft + H9 keyway

Items Checked for Design Purposes

Spring Characteristics SFC(SA2)


Axial load and amount of displacement




Spring Characteristics SFC(DA2)


Axial load and amount of displacement

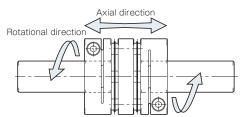
Parallel misalignment direction load and amount of displacement

Special Items to Take Note of

You should note the following to prevent any problems.

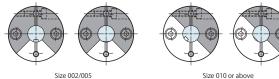
(1) Always be careful of parallel, angular, and axial misalignment.

(2) Always tighten bolts with the specified torque.

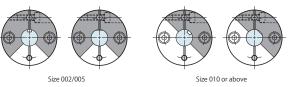

Precautions for Handling

Couplings are assembled at high accuracy using a special mounting jig to ensure accurate concentricity of left and right internal diameters. Take extra precautions when handling couplings, should strong shocks be given on couplings, it may affect mounting accuracy and cause the parts to break during use.

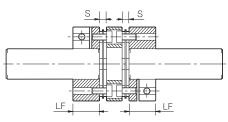
- (1) Couplings are designed for use within an operating temperature range of -30° C to 100° C. Although the couplings are designed to be waterproof and oilproof, do not subject them to excessive amounts of water and oil as it may cause part deterioration.
- (2) Handle the element with care as it is made of a thin stainless steel metal disc, also making sure to be careful so as not to injure yourself.
- (3) Do not tighten up clamping bolts until after inserting the mounting shaft.


Mounting

- (1) Check that coupling clamping bolts have been loosened and remove any rust, dust, oil residue, etc. from inner diameter surfaces of the shaft and couplings. In particular, never allow oil or grease containing antifriction or other agent (molybdenum-, silicon-, or fluorine-based), which would dramatically affect the friction coefficient, to contact the surface.
- (2) Be careful when inserting the couplings into the shaft so as not to apply excessive force of compression or tensile force to the element. Be particularly careful not to apply excessive compressing force needlessly when inserting couplings into the paired shaft after attaching the couplings to the motor.
- (3) With two of the clamping bolts loosened, make sure that couplings move gently along the axial and rotational directions. Readjust the centering of the two shafts if the couplings fail to move smoothly enough. This method is recommended as a way to easily check the concentricity of the left and right sides. If unable to use the same method, check the mounting accuracy using machine parts quality control procedures or an alternative method.


(4)As a general rule, round shafts are to be used for the paired mounting shaft. If needing to use a shaft with a different shape, be careful not to insert it into any of the locations indicated in the diagrams below. (Grayed areas ☐ indicate areas wherein clamping hub shifts when clamped. Do not allow keyways, D-shaped cuts, or other insertions in these areas.) Placing the shaft in an undesirable location may cause the couplings to break or lead to a loss in shaft holding power. It is recommended that you use only round shafts to ensure full utilization of the entire range of coupling performance.

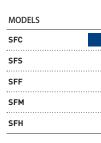
Proper Mounting Examples


SIZE UIU OF above

Poor Mounting Examples

(5) Insert and mount each shaft far enough in that the paired mounting shaft touches the shaft along the entire length of the clamping hub of the coupling (LF dimension), as shown in the diagram below, and does not interfere with the elements, spacers or the other shaft.

In addition, restrict the dimensions between clamping hub faces (S dimensions in the diagram) within the allowable misalignment of the axial direction displacement with respect to a reference value. Note that the tolerance values were calculated based on the assumption that both the level of parallel misalignment and angular deflection are zero. Adjust to keep this value as low as possible.


Model	LF [mm]	S [mm]
SFC-002	5.9	0.55
SFC-005	7.85	1
SFC-010	9.15	1.05
SFC-020	10.75	1.65
SFC-025	10.75	1.9
SFC-030	12.4	2.5
SFC-035	15.5	3
SFC-040	15.5	3
SFC-050	20.5	2.4
SFC-055	24	2.6
SFC-060	25.2	3.2
SFC-080	30	8
SFC-090	30	8.3
SFC-100	30	9.8

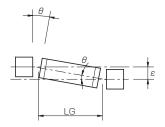
(6) Check to make sure that no compression or tensile force is being applied along the axial direction before tightening up the two clamping bolts. Use a calibrated torque wrench to tighten the clamping bolts to within the tightening torque range listed below.

Model	Clamping bolts	Tightening torque [N·m]
SFC-002	M1.6	$0.23 \sim 0.28$
SFC-005	M2	$0.4 \sim 0.5$
SFC-010	M2.5 (M2)	$1.0 \sim 1.1 \; (0.4 \sim 0.5)$
SFC-020	M2.5	1.0 ~ 1.1
SFC-025	M2.5	1.0 ~ 1.1
SFC-030	M3	1.5 ~ 1.9
SFC-035	M4	3.4 ~ 4.1
SFC-040	M4	3.4 ~ 4.1
SFC-050	M5	$7.0 \sim 8.5$
SFC-055	M6	14~15
SFC-060	M6	14~15
SFC-080	M8	$27 \sim 30$
SFC-090	M8	$27 \sim 30$
SFC-100	M8	$27 \sim 30$

Use M2 bolts on SFC-010 models with holes with a diameter of ø8 mm.

*The start and end numbers for the tightening torque ranges are between the minimum and maximum values. Tighten bolts to a tightening torque within the specified range for the model used.

Items Checked for Design Purposes


Suitable Torque Screwdriver/Torque Wrench

Nominal bolt diameter	Tightening torque [N•m]	Torque screwdriver/ wrench	Hexagon bit/ head	Coupling size						
M1.6	$0.23 \sim 0.28$	CN30LTDK	CB 1.5mm	002						
M2	$0.4 \sim 0.5$	CN60LTDK	SB 1.5mm	005 · 010						
M2.5	$1.0 \sim 1.1$	CN120LTDK	SB 2mm	010 · 020 · 025						
М3	$1.5 \sim 1.9$	CN200LTDK	SB 2.5mm	030						
M4	$3.4 \sim 4.1$	CN500LTDK	SB 3mm	035 · 040						
M5	$7.0 \sim 8.5$	N10LTDK	SB 4mm	050						
M6	$14 \sim 15$	N25LCK	25HCK 5mm	055 · 060						
M8	$27 \sim 30$	N50LCK	50HCK 6mm	080 · 090 · 100						
* Targua coroudriver (wrench) / hit (head) models are those of Nakamura Mfg. Co. 1td										

* Torque screwdriver (wrench)/bit (head) models are those of Nakamura Mfg. Co., Ltd.

Length-specified Special Order Parts Option

Specify any length for the length-specified special order option for the SERVOFLEX SFC(DA2). Use the following formula to calculate the amount of allowable parallel misalignment, adjust it to be no greater than that value, and then mount the coupling.

$\varepsilon = \tan \theta \times \text{LG}$

 ε :Allowable parallel misalignment [mm] heta :Allowable angular deflection [°]

LG = LP + S

LP: Total length of spacer [mm] S: Gap size between clamping hub and spacer [mm]

Options for Keyway Milling

Options for keyway milling are available on request. However, because they are designed such that torque is tranferred to the friction coupling by the clamp mechanism, care should be taken not to exceed the coupling's permitted torque during use. Note also the following issues:

- (1) Only ever use keys that are no wider than the keyway. Using keys that are a tight fit could results in damage during mounting or operation.
- (2) The positional accuracy of keyway milling is visual. If positional accuracy relative to keyway hubs is required, contact Miki Pulley.
- (3) Using JS9 class tolerances provides a tight fit, so couplings may be compressed when mounted on shafts. Take care not to further compress the couplings.
- (4) Setting the fit of the key and keyway too loosely may result in play that generates dust. Also take care that the key does not come loose.
- (5) Adding a set screw over the keyway is not recommended as it may lower clamp performance, and the set screw may also become loose within the torque range you use or during forward/reverse operation. It may also impair the structural strength of the clamping hub or damage the coupling.

Clamping Bolts

Use Miki Pulley-specified clamping bolts because they are processed with solid lubrication films (except for SFC-002 M1.6). Applying adhesives to prevent loosening, oil, or the like to a clamping bolt will alter torque coefficients due to those lubricating components, creating excessive axial forces and potentially damaging the clamping bolt or coupling. Consult Miki Pulley before using such products.

Surface Processing of Coupling Bore Diameter

The bore diameters of SERVOFLEX SFC models may or may not have surface processing in some components due to the circumstances of processing. This does not affect coupling performance. Consult Miki Pulley if your usage conditions require that bore diameters be surface processed or not.

Selection Order of Nominal Bore Diameters when Ordering

When specifying bore diameters, you should basically specify d1 (small diameter)-d2 (large diameter), and always specify d2 for taper adapters mounted on tapered shafts. However, where d1=d2 (same diameters), note the selection order below for each nominal bore diameter when ordering.

Nominal bore diameter symbol	Nominal bore diameter symbol description	Туре	Selection diameter	Selection order
в	Shaft tolerance h7 (h6, g6)	Standard	d1 • d2	1
J	Shaft tolerance j6	Option	d1 • d2	2
к	Shaft tolerance k6	Option	d1 • d2	3
BH	Shaft tolerance h7 (h6, g6) + keyway H9	Option	d1 • d2	4
BJ	Shaft tolerance h7 (h6, g6) + keyway JS9	Option	d1 • d2	5
JH	Shaft tolerance j6 + keyway H9	Option	d1 • d2	6
11	Shaft tolerance j6 + keyway JS9	Option	d1 • d2	7
КН	Shaft tolerance k6 + keyway H9	Option	d1 • d2	8
КJ	Shaft tolerance k6 + keyway JS9	Option	d1 • d2	9
BC	Taper adapter mounted on tapered shaft	Option	d2	10

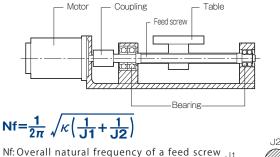
Points to Consider Regarding the Feed Screw System

Servo motor oscillation

Gain adjustment on the servo motor may cause the servo motor to oscillate.

Oscillation in the servo motor during operation can cause problems particularly with the overall natural frequency and electrical control systems of the feed screw system.

In order for these issues to be resolved, the torsional stiffness for the coupling and feed screw section and the moment of inertia and other characteristics for the system overall will need to be adjusted and the torsional natural frequency for the mechanical system raised or the tuning function (filter function) for the electrical control system in the servo motor adjusted during the design stage.


Stepper motor resonance

Stepper motors resonate at certain rotation speeds due to the pulsation frequency of the stepper motor and the torsional natural frequency of the system as a whole. To avoid resonance, either the resonant rotation speed must be simply skipped or the torsional natural frequency considered at the design stage.

Please contact Miki Pulley with any questions regarding stepper motor resonance or servo motor oscillation.

How to Find the Natural Frequency of a Feed Screw System

- (1) Select a coupling based on the nominal and maximum torque of the servo motor or stepper motor.
- (2) Find the overall natural frequency, Nf, from the torsional stiffness of the coupling and feed screw, κ , the moment of inertia of driving side, J1, and the moment of inertia of driven side, J2, for the feed screw system shown below.

- Nf: Overall natural frequency of a feed screw U1
 system [Hz]
- κ:Torsional stiffness of the coupling and feed screw [N·m/rad]
- J1: Moment of inertia of driving side [kg·m²]
- J2: Moment of inertia of driven side [kg·m²]

Selection Procedures

(1) Find the torque, Ta, applied to the coupling using the output capacity, P, of the driver and the usage rotation speed, n.

$$\text{Ta } [\text{N} \cdot \text{m}] = 9550 \times \frac{\text{P } [\text{kW}]}{\text{n } [\text{min}^{-1}]}$$

(2) Determine the factor K from the load properties, and find the corrected torque, Td, applied to the coupling.

Td $[N \cdot m] =$ Ta $[N \cdot m] \times K$ (Refer to the table below for values)

For servo motor drive, multiply the maximum torque, Ts, by the usage factor K = 1.2 to 1.5.

Td $[N \cdot m] = Ts [N \cdot m] \times (1.2 \sim 1.5)$

(3) Set the size so that the rated coupling torque, Tn, is higher than the corrected torque, Td.

$Tn [N \cdot m] \ge Td [N \cdot m]$

- (4) The rated torque of the coupling may be limited by the bore diameter of the coupling. See the Specifications and Standard Bore Diameters tables.
- (5) Check that the mount shaft is no larger than the maximum bore diameter of the coupling.

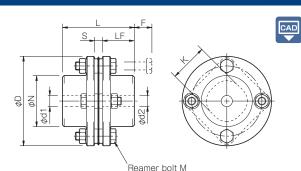
*Contact Miki Pulley for assistance with any device experiencing extreme periodic vibrations.

Easy Selection Chart

Select a coupling size based on the rated output and the rated/maximum torque of the ordinary servo motor. The torque characteristics of servo motors vary between manufacturers, so check the specifications in the manufacturer catalog before finalizing a coupling size selection.

	Servo motor specifications					Corresponding SERVO			
Rated output [W] [kW]	Rated rotation speed [min ⁻¹]	Rated torque [N•m]	Max. torque [N•m]	Shaft diameter [mm]	Single element type	Double element type	Rated torque [N∙m]	Max. bore diameter [mm]	Outer diameter [mm]
3W	$3000 \sim 6000$	0.0096	0.029	4	SFC-002SA2	SFC-002DA2	0.25	5	12
5W	$3000 \sim 6000$	0.016	0.048	5	SFC-002SA2	SFC-002DA2	0.25	5	12
10W	$3000 \sim 6000$	0.032	0.096	6	SFC-005SA2	SFC-005DA2	0.6	6	16
15W	$3000 \sim 6000$	0.047	0.143	4	SFC-002SA2	SFC-002DA2	0.25	5	12
20W	$3000 \sim 6000$	0.0638	0.191	6	SFC-005SA2	SFC-005DA2	0.6	6	16
30W	$3000 \sim 6000$	0.098	0.322	8	SFC-010SA2	SFC-010DA2	1	8	19
50W	$3000 \sim 6000$	0.16	0.64	8	SFC-010SA2	SFC-010DA2	1	8	19
100W	$3000 \sim 6000$	0.32	1.28	8	SFC-020SA2	SFC-020DA2	2	11	26
150W	$3000 \sim 6000$	0.477	1.67	8	SFC-025SA2	SFC-025DA2	4	14	29
200W	$3000 \sim 6000$	0.64	2.23	14	SFC-025SA2	SFC-025DA2	4	14	29
300W	$3000 \sim 6000$	0.95	3.72	14	SFC-030SA2	SFC-030DA2	5	16	34
400W	$3000 \sim 6000$	1.3	5	14	SFC-035SA2	SFC-035DA2	10	19	39
450W	1500	2.86	8.92	19	SFC-040SA2	SFC-040DA2	12	24	44
500W	2000	2.4	7.2	24	SFC-040SA2	SFC-040DA2	12	24	44
600W	$3000 \sim 6000$	1.91	5.73	19	SFC-035SA2	SFC-035DA2	10	19	39
750W	$3000 \sim 6000$	2.387	9	19	SFC-040SA2	SFC-040DA2	12	24	44
750W	2000	3.6	10.7	22	SFC-050SA2	SFC-050DA2	25	30	56
850W	1500	5.39	13.8	19	SFC-050SA2	SFC-050DA2	25	30	56
1kW	$3000 \sim 6000$	3.18	12.5	24	SFC-050SA2	SFC-050DA2	25	30	56
1kW	2000	5	16.6	24	SFC-050SA2	SFC-050DA2	25	30	56
1.5kW	2000	7.5	21.6	35	SFC-060SA2	SFC-060DA2	60	35	68
2kW	$3000 \sim 6000$	6.8	21	24	SFC-055SA2	SFC-055DA2	40	30	63
2kW	2000	9.54	31	35	SFC-060SA2	SFC-060DA2	60	35	68
2.2kW	2000	10.5	36.7	28	SFC-060SA2	SFC-060DA2	60	35	68
2.5kW	$3000 \sim 6000$	12	46	24	SFC-060SA2	SFC-060DA2	60	35	68
3kW	$3000 \sim 6000$	12	35	28	SFC-060SA2	SFC-060DA2	60	35	68
3kW	2000	14.3	42.9	35	SFC-060SA2	SFC-060DA2	60	35	68
3.5kW	$3000\sim 6000$	11.1	33.4	28	SFC-060SA2	SFC-060DA2	60	35	68
3.5kW	2000	17	55	35	SFC-080SA2	SFC-080DA2	100	40	82
4kW	$3000 \sim 6000$	22	39.2	28	SFC-060SA2	SFC-060DA2	60	35	68
4kW	2000	19.1	66.9	35	SFC-080SA2	SFC-080DA2	100	40	82
4.5kW	1500	28.5	105	35	SFC-090SA2	SFC-090DA2	180	45	94
5kW	$3000 \sim 6000$	15.9	47.6	28	SFC-080SA2	SFC-080DA2	100	40	82
5kW	2000	23.9	71.6	35	SFC-080SA2	SFC-080DA2	100	40	82
6kW	2000	38	130	35	SFC-090SA2	SFC-090DA2	180	45	94
7kW	1500	44.6	134	42	SFC-090SA2	SFC-090DA2	180	45	94
7.5kW	1500	48	139	42	SFC-100SA2	SFC-100DA2	250	45	104
9kW	$3000 \sim 6000$	28.6	85	35	SFC-090SA2	SFC-090DA2	180	45	94
11kW	2000	52.5	158	42	SFC-100SA2	SFC-100DA2	250	45	104

SFS(S) Types Single Element Type

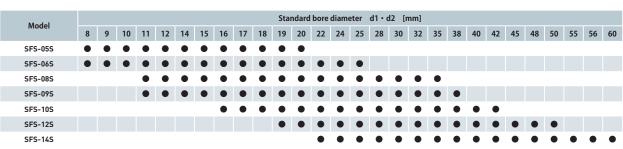

Specifications

	Rated	Misalig	nment	Max.	Torsional	Axial	Moment of	
Model	[N • m]	Angular [°]	Axial [mm]	rotation speed [min ⁻¹]	stiffness [N • m/rad]	stiffness [N/mm]	inertia [kg • m²]	Mass [kg]
SFS-05S	20	1	± 0.6	25000	16000	43	0.11 × 10 ⁻³	0.30
SFS-06S	40	1	± 0.8	20000	29000	45	0.30 × 10 ⁻³	0.50
SFS-08S	80	1	± 1.0	17000	83000	60	0.87 × 10 ⁻³	1.00
SFS-09S	180	1	± 1.2	15000	170000	122	1.60 × 10 ⁻³	1.40
SFS-10S	250	1	± 1.4	13000	250000	160	2.60 × 10 ⁻³	2.10
SFS-12S	450	1	± 1.6	11000	430000	197	6.50 × 10 ⁻³	3.40
SFS-14S	800	1	± 1.8	9500	780000	313	9.90 × 10 ⁻³	4.90

*Max. rotation speed does not take into account dynamic balance.

*The moment of inertia and mass are measured for the maximum bore diameter.

Dimensions



Model		d1 • d2			N		LF	s	F	к	м	
Model	Pilot bore	Min.	Max.	D	IN	L	LF	3	r	ĸ	IVI	
SFS-05S	7	8	20	56	32	45	20	5	11	24	4-M5 × 22	
SFS-06S	7	8	25	68	40	56	25	б	10	30	4-M6 × 25	
SFS-08S	10	11	35	82	54	66	30	6	11	38	4-M6 × 29	
SFS-09S	10	11	38	94	58	68	30	8	21	42	4-M8 × 36	
SFS-10S	15	16	42	104	68	80	35	10	16	48	4-M8 × 36	
SFS-12S	18	19	50	126	78	91	40	11	23	54	4-M10 × 45	
SFS-14S	20	22	60	144	88	102	45	12	31	61	4-M12 × 54	

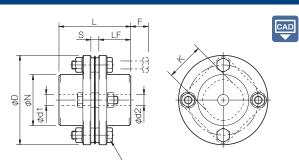
*Pilot bores are to be drilled into the part.

*The nominal diameter of the reamer bolt M is equal to the quantity minus the nominal diameter of the screw threads times the nominal length

Standard Bore Diameter

* Bore diameters marked with • are supported as standard bore diameter. See the standard hole-drilling standards for information.

SFS(S-C) Types Single Element Type/Electroless Nickel Plating Specification

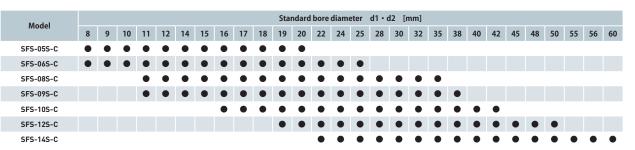

Specifications

	Rated	Misalig	Inment	Max.	Torsional	Axial	Moment of	
Model	[N • m]		Axial [mm]	rotation speed [min ⁻¹]	stiffness [N • m/rad]	stiffness [N/mm]	inertia [kg • m²]	Mass [kg]
SFS-05S-C	15	1	± 0.6	25000	16000	43	0.11 × 10 ⁻³	0.30
SFS-06S-C	30	1	± 0.8	20000	29000	45	0.30 × 10 ⁻³	0.50
SFS-08S-C	60	1	± 1.0	17000	83000	60	0.87 × 10 ⁻³	1.00
SFS-09S-C	135	1	± 1.2	15000	170000	122	1.60 × 10 ⁻³	1.40
SFS-10S-C	190	1	± 1.4	13000	250000	160	2.60 × 10 ⁻³	2.10
SFS-12S-C	340	1	± 1.6	11000	430000	197	6.50 × 10 ⁻³	3.40
SFS-14S-C	600	1	± 1.8	9500	780000	313	9.90 × 10 ⁻³	4.90

*Max. rotation speed does not take into account dynamic balance

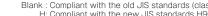
*The moment of inertia and mass are measured for the maximum bore diameter.

Dimensions



Reamer bolt M

										onic [initi]
Model	d1	• d2	D	N		LF	s	F	к	м
model	Min.	Max.	U	N	-	Lr	5		ĸ	M
SFS-05S-C	8	20	56	32	45	20	5	11	24	4-M5 × 22
SFS-06S-C	8	25	68	40	56	25	6	10	30	4-M6 × 25
SFS-08S-C	11	35	82	54	66	30	6	11	38	4-M6 × 29
SFS-09S-C	11	38	94	58	68	30	8	21	42	4-M8 × 36
SFS-10S-C	16	42	104	68	80	35	10	16	48	4-M8 × 36
SFS-12S-C	19	50	126	78	91	40	11	23	54	4-M10 × 45
SFS-14S-C	22	60	144	88	102	45	12	31	61	4-M12 × 54


*The nominal diameter of the reamer bolt M is equal to the quantity minus the nominal diameter of the screw threads times the nominal length

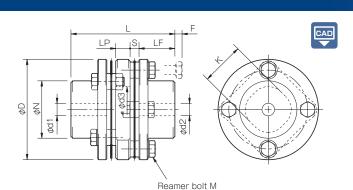
Standard Bore Diameter

* Bore diameters marked with 🌒 are supported as standard bore diameter. See the standard hole-drilling standards for information

MODELS										
SFC										
SFS										
SFF										
SFM										
SFH										

Unit [mm]

SFS(W) Types Double Element Type

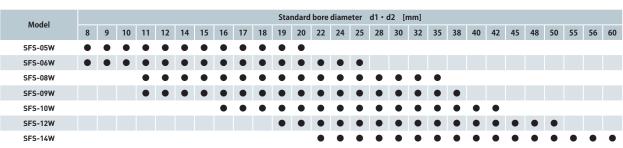

Specifications

	Rated		Misalignment		Max.	Torsional	Axial	Moment of	
Model	torque [N • m]	Parallel [mm]	Angular [°]	Axial [mm]	rotation speed [min ⁻¹]	stiffness [N • m/rad]	stiffness [N/mm]	inertia [kg·m²]	Mass [kg]
SFS-05W	20	0.2	1 (On one side)	± 1.2	10000	8000	21	0.14 × 10 ⁻³	0.40
SFS-06W	40	0.3	1 (On one side)	± 1.6	8000	14000	22	0.41 × 10 ⁻³	0.70
SFS-08W	80	0.3	1 (On one side)	± 2.0	6800	41000	30	1.10 × 10 ⁻³	1.30
SFS-09W	180	0.5	1 (On one side)	± 2.4	6000	85000	61	2.20 × 10 ⁻³	2.10
SFS-10W	250	0.5	1 (On one side)	± 2.8	5200	125000	80	3.60 × 10 ⁻³	2.80
SFS-12W	450	0.6	1 (On one side)	± 3.2	4400	215000	98	9.20 × 10 ⁻³	4.90
SFS-14W	800	0.7	1 (On one side)	± 3.6	3800	390000	156	15.00 × 10 ⁻³	7.10

*Max. rotation speed does not take into account dynamic balance.

*The moment of inertia and mass are measured for the maximum bore diameter.

Dimensions



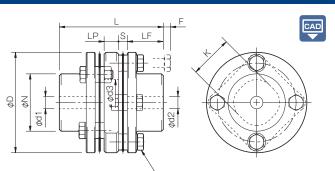
													Unit [mm]
Model		d1 • d2		D	N		LF	LP	s	F	d3	к	м
Model	Pilot bore	Min.	Max.	U	N	-		Lr	3	r	us	ĸ	IVI
SFS-05W	7	8	20	56	32	58	20	8	5	4	20	24	8-M5 × 15
SFS-06W	7	8	25	68	40	74	25	12	6	3	24	30	8-M6 × 18
SFS-08W	10	11	35	82	54	84	30	12	6	2	28	38	$8-M6 \times 20$
SFS-09W	10	11	38	94	58	98	30	22	8	12	32	42	8-M8 × 27
SFS-10W	15	16	42	104	68	110	35	20	10	7	34	48	8-M8 × 27
SFS-12W	18	19	50	126	78	127	40	25	11	10	40	54	8-M10 × 32
SFS-14W	20	22	60	144	88	144	45	30	12	15	46	61	8-M12 × 38

*Pilot bores are to be drilled into the part.

*The nominal diameter of the reamer bolt M is equal to the quantity minus the nominal diameter of the screw threads times the nominal length.

Standard Bore Diameter

* Bore diameters marked with • are supported as standard bore diameter. See the standard hole-drilling standards for information.

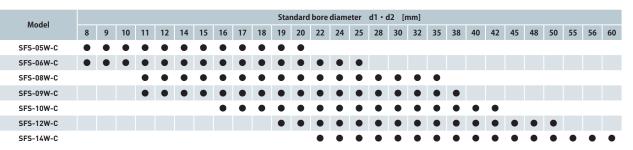

SFS(W-C) Types Double Element Type/Electroless Nickel Plating Specification

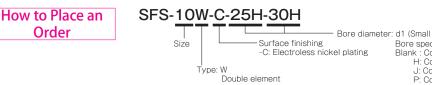
Specifications

	Rated		Misalignment		Max.	Torsional	Axial	Moment of	
Model	torque [N • m]	Parallel [mm]	Angular [°]	Axial [mm]	rotation speed [min ⁻¹]	stiffness [N • m/rad]	stiffness [N/mm]	inertia [kg·m²]	Mass [kg]
SFS-05W-C	15	0.2	1 (On one side)	± 1.2	10000	8000	21	0.14 × 10 ⁻³	0.40
SFS-06W-C	30	0.3	1 (On one side)	± 1.6	8000	14000	22	0.41 × 10 ⁻³	0.70
SFS-08W-C	60	0.3	1 (On one side)	± 2.0	6800	41000	30	1.10 × 10 ⁻³	1.30
SFS-09W-C	135	0.5	1 (On one side)	± 2.4	6000	85000	61	2.20 × 10 ⁻³	2.10
SFS-10W-C	190	0.5	1 (On one side)	± 2.8	5200	125000	80	3.60 × 10 ⁻³	2.80
SFS-12W-C	340	0.6	1 (On one side)	± 3.2	4400	215000	98	9.20 × 10 ⁻³	4.90
SFS-14W-C	600	0.7	1 (On one side)	± 3.6	3800	390000	156	15.00 × 10 ⁻³	7.10

*Max. rotation speed does not take into account dynamic balance. *The moment of inertia and mass are measured for the maximum bore diameter.

Dimensions




												Unit [mm]
Model	d1 •	• d2	D	N	L	LF	LP	c	F	d3	к	м
Model	Min.	Max.	U	N			Lr	3	, r	us	ĸ	
SFS-05W-C	8	20	56	32	58	20	8	5	4	20	24	8-M5 × 15
SFS-06W-C	8	25	68	40	74	25	12	6	3	24	30	8-M6 × 18
SFS-08W-C	11	35	82	54	84	30	12	6	2	28	38	8-M6 × 20
SFS-09W-C	11	38	94	58	98	30	22	8	12	32	42	8-M8 × 27
SFS-10W-C	16	42	104	68	110	35	20	10	7	34	48	8-M8 × 27
SFS-12W-C	19	50	126	78	127	40	25	11	10	40	54	8-M10 × 32
SFS-14W-C	22	60	144	88	144	45	30	12	15	46	61	8-M12 × 38

*The nominal diameter of the reamer bolt M is equal to the quantity minus the nominal diameter of the screw threads times the nominal length.

Standard Bore Diameter

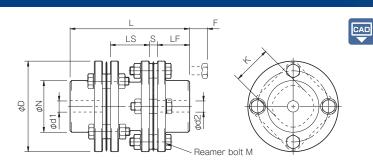
* Bore diameters marked with • are supported as standard bore diameter. See the standard hole-drilling standards for information.

Bore diameter: d1 (Small diameter) - d2 (Large diameter) Bore specifications

Bore specifications Blank : Compliant with the old JIS standards (class 2) E9 H: Compliant with the new JIS standards H9 J: Compliant with the new JIS standards JS9 P: Compliant with the new JIS standards P9 N: Compliant with the new motor standards

MODELS	
SFC	
SFS	
SFF	
SFM	
SFH	

SFS(G) Types Floating Shaft Type


Specifications

	Rated		Misalignment		Max.	Torsional	Axial	Moment of	
Model	torque [N • m]	Parallel [mm]	Angular [°]	Axial [mm]	rotation speed [min ⁻¹]	stiffness [N • m/rad]	stiffness [N/mm]	inertia [kg·m²]	Mass [kg]
SFS-05G	20	0.5	1 (On one side)	± 1.2	20000	8000	21	0.20 × 10 ⁻³	0.50
SFS-06G	40	0.5	1 (On one side)	± 1.6	16000	14000	22	0.55 × 10 ⁻³	0.90
SFS-08G	80	0.5	1 (On one side)	± 2.0	13000	41000	30	1.50 × 10 ⁻³	1.70
SFS-09G	180	0.6	1 (On one side)	± 2.4	12000	85000	61	2.90 × 10 ⁻³	2.40
SFS-10G	250	0.6	1 (On one side)	± 2.8	10000	125000	80	4.60 × 10 ⁻³	3.30
SFS-12G	450	0.8	1 (On one side)	± 3.2	8000	215000	98	11.80 × 10 ⁻³	5.80
SFS-14G	800	0.9	1 (On one side)	± 3.6	7000	390000	156	21.20 × 10 ⁻³	8.60

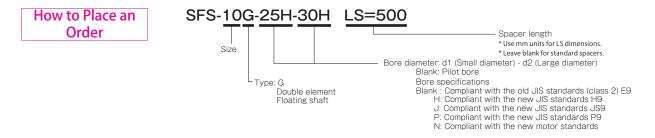
*Max. rotation speed does not take into account dynamic balance.

*The moment of inertia and mass are measured for the maximum bore diameter.

Dimensions

Model		d1 • d2		D	N		LF	LS	ç	F	к	
Model	Pilot bore	Min.	Max.	D	N	L	LF	LS	2	r	ĸ	М
SFS-05G	7	8	20	56	32	74	20	24	5	11	24	8-M5 × 22
SFS-06G	7	8	25	68	40	86	25	24	6	10	30	8-M6 × 25
SFS-08G	10	11	35	82	54	98	30	26	6	11	38	8-M6 × 29
SFS-09G	10	11	38	94	58	106	30	30	8	21	42	8-M8 × 36
SFS-10G	15	16	42	104	68	120	35	30	10	16	48	8-M8 × 36
SFS-12G	18	19	50	126	78	140	40	38	11	23	54	8-M10 × 45
SFS-14G	20	22	60	144	88	160	45	46	12	31	61	8-M12 × 54

*Pilot bores are to be drilled into the part.


*If you require a product with an LS dimension other than that above, contact Miki Pulley with your required dimension. Please contact Miki Pulley for assistance if LS ≧ 1000.

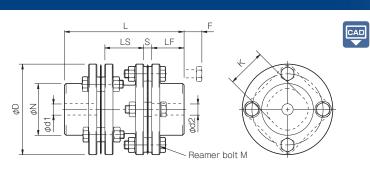
*The nominal diameter of the reamer bolt M is equal to the quantity minus the nominal diameter of the screw threads times the nominal length.

Standard Bore Diameter

Model											Sta	ndard	bore	diam	eter	d1 • d	d2 [r	nm]										
Model	8	9	10	11	12	14	15	16	17	18	19	20	22	24	25	28	30	32	35	38	40	42	45	48	50	55	56	60
SFS-05G	٠	٠	٠	٠	٠	٠	٠	٠	٠	۲	٠	٠																
SFS-06G	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠													
SFS-08G				٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠									
SFS-09G				٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠								
SFS-10G								٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠						
SFS-12G											٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠			
SFS-14G													٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠

* Bore diameters marked with • are supported as standard bore diameter. See the standard hole-drilling standards for information.

Unit [mm]

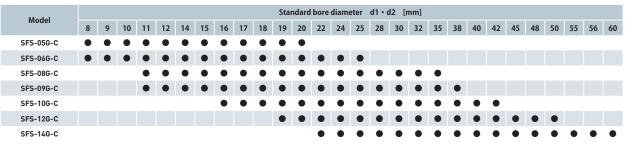

SFS(G-C) Types Floating Shaft Type/Electroless Nickel Plating Specification

Specifications

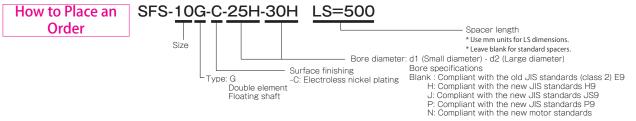
	Rated		Misalignment		Max.	Torsional	Axial	Moment of	
Model	torque [N • m]	Parallel [mm]	Angular [°]	Axial [mm]	rotation speed [min ⁻¹]	stiffness [N • m/rad]	stiffness [N/mm]	inertia [kg·m²]	Mass [kg]
SFS-05G-C	15	0.5	1 (On one side)	± 1.2	20000	8000	21	0.20 × 10 ⁻³	0.50
SFS-06G-C	30	0.5	1 (On one side)	± 1.6	16000	14000	22	0.55 × 10 ⁻³	0.90
SFS-08G-C	60	0.5	1 (On one side)	± 2.0	13000	41000	30	1.50 × 10 ⁻³	1.70
SFS-09G-C	135	0.6	1 (On one side)	± 2.4	12000	85000	61	2.90 × 10 ⁻³	2.40
SFS-10G-C	190	0.6	1 (On one side)	± 2.8	10000	125000	80	4.60 × 10 ⁻³	3.30
SFS-12G-C	340	0.8	1 (On one side)	± 3.2	8000	215000	98	11.80 × 10 ⁻³	5.80
SFS-14G-C	600	0.9	1 (On one side)	± 3.6	7000	390000	156	21.20 × 10 ⁻³	8.60

*Max. rotation speed does not take into account dynamic balance. *The moment of inertia and mass are measured for the maximum bore diameter.

Dimensions


											0
Model	d1	• d2	D	N		LF	LS		-	к	м
woder	Min.	Max.	U	N	L	LF	LS	2	r	ĸ	IVI
SFS-05G-C	8	20	56	32	74	20	24	5	11	24	8-M5 × 22
SFS-06G-C	8	25	68	40	86	25	24	6	10	30	8-M6 × 25
SFS-08G-C	11	35	82	54	98	30	26	6	11	38	8-M6 × 29
SFS-09G-C	11	38	94	58	106	30	30	8	21	42	8-M8 × 36
SFS-10G-C	16	42	104	68	120	35	30	10	16	48	8-M8 × 36
SFS-12G-C	19	50	126	78	140	40	38	11	23	54	8-M10 × 45
SFS-14G-C	22	60	144	88	160	45	46	12	31	61	8-M12 × 54

* If you require a product with an LS dimension other than that above, contact Miki Pulley with your required dimension. Please contact Miki Pulley for assistance if LS


Please note that when the LS dimension exceeds 100 mm with the electroless nickel plating specification (SFS- G G-C), the insertion length of the shaft cannot exceed the LS dimension.

* The nominal diameter of the reamer bolt M is equal to the quantity minus the nominal diameter of the screw threads times the nominal length.

Standard Bore Diameter

* Bore diameters marked with ● are supported as standard bore diameter. See the standard hole-drilling standards for information

Unit [mm]

MODELS

SFC

SFS

SFF

SFM

SFH

Options Frictional coupling hub

The hub contains a frictional coupling element enabling more accurate installation.

Specifications

Specificatio	113								
Model	Rated torque	Parallel	Misalignment Angular	Axial	Max. rotation speed	Torsional stiffness	Axial stiffness	Moment of inertia	Mass [kg]
	[N • m]	[mm]	[°]	[mm]	[min ⁻¹]	[N ∙ m/rad]	[N/mm]	[kg • m²]	Ling)
SFS-06S- 🗆 M- 🗆 M	40	-	1	± 0.8	5000	29000	45	0.30 × 10 ⁻³	0.70
SFS-08S- 🗌 M- 🗌 M	80	-	1	± 1.0	5000	83000	60	0.93 × 10 ⁻³	1.30
SFS-09S- 🗌 M- 🗌 M	180	-	1	± 1.2	5000	170000	122	1.80 × 10 ⁻³	1.80
SFS-10S- 🗆 M- 🗆 M	250	-	1	± 1.4	5000	250000	160	2.70 × 10 ⁻³	2.30
SFS-12S- 🗌 M- 🗌 M	450	-	1	± 1.6	5000	430000	197	6.80 × 10 ⁻³	4.10
SFS-14S- 🗌 M- 🗌 M	580	-	1	± 1.8	5000	780000	313	14.01 × 10 ⁻³	6.40
			Misalignment						
Model	Rated torque [N • m]	Parallel [mm]	Angular [°]	Axial [mm]	Max. rotation speed [min ⁻¹]	Torsional stiffness [N•m/rad]	Axial stiffness [N/mm]	Moment of inertia [kg • m²]	Mass [kg]
SFS-06W- 🗌 M- 🗌 M	40	0.3	1 (On one side)	± 1.6	5000	14000	22	0.41 × 10 ⁻³	0.90
SFS-08W- 🗆 M- 🗆 M	80	0.3	1 (On one side)	± 2.0	5000	41000	30	1.16×10^{-3}	1.60
SFS-09W- 🗌 M- 🗌 M	180	0.5	1 (On one side)	± 2.4	5000	85000	61	2.40 × 10 ⁻³	2.50
SFS-10W- 🗆 M- 🗆 M	250	0.5	1 (On one side)	± 2.8	5000	125000	80	3.70 × 10 ⁻³	3.00
SFS-12W- 🗌 M- 🗌 M	450	0.6	1 (On one side)	± 3.2	4400	215000	98	9.50 × 10 ⁻³	5.60
SFS-14W- 🗌 M- 🗌 M	580	0.7	1 (On one side)	± 3.6	3800	390000	156	19.11 × 10 ⁻³	8.60
	Rated		Misalignment		Max.	Torsional	Axial	Moment of	
Model	torque [N • m]	Parallel [mm]	Angular [°]	Axial [mm]	rotation speed [min ⁻¹]	stiffness [N • m/rad]	stiffness [N/mm]	inertia [kg • m²]	Mass [kg]
SFS-06G- 🗌 M- 🗌 M	40	0.5	1 (On one side)	± 1.6	5000	14000	22	0.55 × 10 ⁻³	1.10
SFS-08G- 🗌 M- 🗌 M	80	0.5	1 (On one side)	± 2.0	5000	41000	30	1.56 × 10 ⁻³	2.00
SFS-09G- 🗌 M- 🗌 M	180	0.6	1 (On one side)	± 2.4	5000	85000	61	3.10 × 10 ⁻³	2.80
SFS-10G- 🗌 M- 🗌 M	250	0.6	1 (On one side)	± 2.8	5000	125000	80	4.70 × 10 ⁻³	3.50
SFS-12G- 🗌 M- 🗌 M	450	0.8	1 (On one side)	± 3.2	5000	215000	98	12.10 × 10 ⁻³	6.50
SFS-14G- 🗌 M- 🗌 M	580	0.9	1 (On one side)	± 3.6	5000	390000	156	25.31 × 10 ⁻³	10.10

*Check the Standard Bore Diameters as there may be limitations on the rated torque caused by the holding power of the coupling shaft section.

*Max. rotation speed does not take into account dynamic balance

*The moment of inertia and mass are measured for the maximum bore diameter.

Dimensions SFS(W) SFS(S) SFS(G) S S S S S Detachment Detachment Detachment Detachment screw hole M2 С screw hole M2 LF1 screw hole M2 screw hole M2 C_ LF2 M1 C. LF2 С M1 С LF1 LF2 M1 LF1 M1 M1 M1 f Æ T ф 12 Ф 12 Ф ØN2 D Ø Ωø lpφ ¢d2 Π¢ φd ¢q ٩W ՄՄ Reamer bolt MS Reamer bolt MW Reamer bolt MG Unit [mm] d 1 d 2 D N1 L3 LF1 LF2 LP LS s с d3 Κ MS Model N2 L1 L2 MW MG M1 M2 SFS-06 12.14.15 12.14.15 68 40 40 95.6 25 25 12 24 24 30 4-M6×25 8-M6×18 8-M6×25 4-M5 2-M5 65.6 83.6 6 4.8 15.16.20.22 15.16.20.22 82 28 SFS-08 54 54 75.6 93.6 107.6 30 30 12 26 6 4.8 38 4-M6×29 8-M6×20 8-M6×29 4-M6 2-M6 25.28 25.28 58 77.6 107.6 115.6 30 SFS-09 94 58 30 22 30 8 4.8 32 42 4-M8×36 8-M8×27 8-M8×36 6-M6 2-M6 25.28 35 85.6 115.6 123.6 38 68 SFS-10 25-28-30-35 25-28-30-35 104 35 68 68 89.6 119.6 129.6 35 20 30 10 4.8 34 48 4-M8×36 8-M8×27 8-M8×36 6-M6 2-M6 SFS-12 30.35 30.35 126 78 78 101.6 137.6 150.6 40 40 25 38 11 5.3 40 54 4-M10×45 8-M10×32 8-M10×45 4-M8 2-M8 35 5.3 46 61 4-M12×54 8-M12×38 8-M12×54 6-M8 2-M8 SFS-14 35 144 88 88 112.6 154.6 170.6 45 45 30 46 12

* If you require a product with an LS dimension other than that for SFS(G) type, contact Miki Pulley with your required dimension. Please contact Miki Pulley for assistance if LS ≥ 1000. * The nominal diameters of each bolt and tap are equal to the quantity minus the nominal diameter of the screw threads times the nominal length. The quantities for the pressure bolt M1 and detachment screw hole M2 are quantities for the hub on one side.

Standard B		lamete									
					Sta	ndard bore dia	meter d2 [m	nm]			
SFS-06		12M	14M	15M	16M	20M	22M	25M	28M	30M	35N
	12M	٠	٠	•							
Standard bore iameter d1 [mm]	14M		•	•							
	15M			٠							
SFS-08					Sta	ndard bore dia	meter d2 [m	nm]			
515-00		12M	14M	15M	16M	20M	22M	25M	28M	30M	35N
	15M			•	•	•	٠				
Standard bore	16M				•	•	•				
iameter d1 [mm]	20M					•	٠				
	22M						•				
SFS-09						ndard bore dia	-	-			
		12M	14M	15M	16M	20M	22M	25M	28M	30M	35N
Standard bore	25M							•	•		•
iameter d1 [mm]	28M								•		•
SFS-10					Sta	ndard bore dia	meter d2 [m	ım]			
5F5-10		12M	14M	15M	16M	20M	22M	25M	28M	30M	35N
	25M							•	•	•	•
Standard bore	28M								•	•	•
iameter d1 [mm]	30M									٠	•
	35M										•
656.40					Sta	ndard bore dia	meter d2 [m	ım]			
SFS-12		12M	14M	15M	16M	20M	22M	25M	28M	30M	35M
Standard bore	30M									380	380
iameter d1 [mm]	35M										•
CTC 11					Sta	ndard bore dia	meter d2 [m	nm]			
SFS-14		12M	14M	15M	16M	20M	22M	25M	28M	30M	351

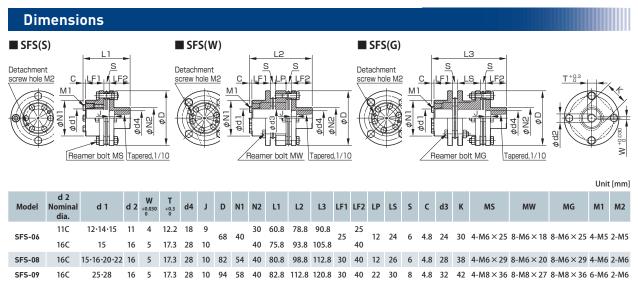
* Bore diameters marked with
or numbers are supported as the standard bore diameters. Consult Miki Pulley regarding special arrangements which may be possible for other bore diameters.
* Bore diameters whose fields contain numbers are restricted in their rated torque by the holding power of the shaft connection component because the bore diameter is small. The numbers indicate the rated torque him to be a standard bore diameters.

torque [N-m]. * Where a bore diameter is not given above and is small, please check first; model may be restricted in its rated torque.

* The recommended processing tolerance for paired mounting shafts is the h7 (h6 or g6) class. However, for a bore diameter of ø35, the shaft tolerance is $+ 0.000 \\ -$

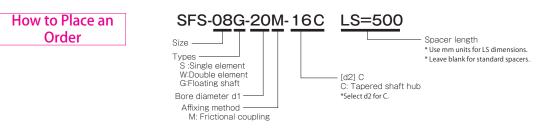
How to Place an Order
SFS-10G-25M-30M
LS=500
Spacer length
Use mm units for LS dimensions.
LS=500
Spacer length
Use mm units for LS dimensions.
LS=4
Comparison of the spacer of the spa

MODELS SFC SFS SFF SFM SFH

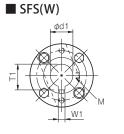

Options Tapered Shaft Supported

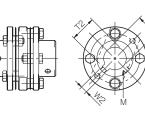
Supports servo motor tapered shafts.

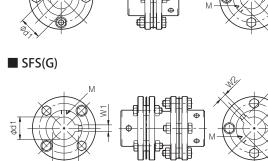
Specificatio	ns								
	Rated		Misalignment		Max.	Torsional	Axial	Moment of	
Model	torque [N • m]	Parallel [mm]	Angular [°]	Axial [mm]	rotation speed [min ⁻¹]	stiffness [N • m/rad]	stiffness [N/mm]	inertia [kg • m²]	Mass [kg]
SFS-06S- 🗆 M-11C	40	-	1	± 0.8	5000	29000	45	0.29 × 10 ⁻³	0.60
SFS-06S- 🗆 M-16C	40	-	1	± 0.8	5000	29000	45	0.34 × 10 ⁻³	0.70
SFS-08S- 🗆 M-16C	80	-	1	± 1.0	5000	83000	60	0.84 × 10 ⁻³	1.20
SFS-09S- 🗆 M-16C	180	-	1	± 1.2	5000	170000	122	1.50 × 10 ⁻³	1.60
Model	Rated torque [N ∙ m]	Parallel [mm]	Misalignment Angular [°]	Axial [mm]	Max. rotation speed [min ⁻¹]	Torsional stiffness [N•m/rad]	Axial stiffness [N/mm]	Moment of inertia [kg • m²]	Mass [kg]
SFS-06W- 🗆 M-11C	40	0.3	1 (On one side)	± 1.6	5000	14000	22	0.40 × 10 ⁻³	0.80
SFS-06W- 🗌 M-16C	40	0.3	1 (On one side)	± 1.6	5000	14000	22	0.45 × 10 ⁻³	0.90
SFS-08W- 🗌 M-16C	80	0.3	1 (On one side)	± 2.0	5000	41000	30	1.07 × 10 ⁻³	1.50
SFS-09W- 🗌 M-16C	180	0.5	1 (On one side)	± 2.4	5000	85000	61	2.10 × 10 ⁻³	2.30
			Misalignment						
Model	Rated torque [N ∙ m]	Parallel [mm]	Angular [°]	Axial [mm]	Max. rotation speed [min ⁻¹]	Torsional stiffness [N ∙ m/rad]	Axial stiffness [N/mm]	Moment of inertia [kg • m²]	Mass [kg]
SFS-06G- 🗌 M-11C	40	0.5	1 (On one side)	± 1.6	5000	14000	22	0.54 × 10 ⁻³	1.00
SFS-06G- 🗆 M-16C	40	0.5	1 (On one side)	± 1.6	5000	14000	22	0.59 × 10 ⁻³	1.10
SFS-08G- 🗌 M-16C	80	0.5	1 (On one side)	± 2.0	5000	41000	30	1.47 × 10 ⁻³	1.90
SFS-09G- 🗆 M-16C	180	0.6	1 (On one side)	± 2.4	5000	85000	61	2.80 × 10 ⁻³	2.60


* There may be limitations on the rated torque caused by the holding power of the coupling shaft section. If the bore diameter is not standard and is small, please check first.

* Max. rotation speed does not take into account dynamic balance. * The moment of inertia and mass are measured for the maximum bore diameter.


* If you require a product with an LS dimension other than that for SFS(G) type, contact Miki Pulley with your required dimension. Please contact Miki Pulley for assistance if LS \geq 1000. * The nominal diameters of each bolt and tap are equal to the quantity minus the nominal diameter of the screw threads times the nominal length.


* The machining tolerance for paired mounting shafts of the hub on the friction-coupled side is h7 (h6 or g6) class.



Standard Hole-Drilling Standards

- Positioning precision for keyway milling is determined by sight, so contact Miki Pulley when the keyway requires a positioning precision for a particular flange hub.
- Set screw positions are not on the same plane.
- The set screws are included with the product.
- Consult the technical documentation at the end of this volume for standard dimensions for bore drilling other than those given here.

SFS(S)

Unit [mm]

Bore Keywa		s compliant	with the old	I JIS standar	ds (class 2)	Model	s compliant	with the n	ew JIS stan	dards (H9)		s compliant	with the ne	w JIS stand	lards (JS9)		ls complian	t with the n	ew JIS stand	lards (P9)
8 8 $^{+022}$ - - 2.M4 8H 8 $^{+023}$ 3 0.03 3 0.03 0.04 2.M4 9P 9 $^{+022}$ 3 - - - 2.M4 9H 9 $^{+023}$ 3 0.03 10.4 2.M4 9P 9 $^{+023}$ 3 0.03 10.4 2.M4 10 10 $^{+0023}$ 3 0.03 10.4 2.M4 10 10 $^{+0023}$ 3 0.03 1.14 2.M4 10 10 $^{+0023}$ 3 0.03 1.14 2.M4 10 11 $^{+0013}$ 3 0.03 2.M4 10 10 $^{+0013}$ 3 0.03 2.M4 10.1 11 10	Nominal bore diameter	diameter	width	height	screw hole	Nominal bore diameter	diameter	width	height [T1 • T2]	screw hole	Nominal bore diameter	diameter	width	height [T1 • T2]	screw hole	Nominal bore diameter	diameter	width	height [T1 • T2]	screw hole
99 $^{+022$ 2-M49H9 $^{+022}$ 3 $^{+022}$ 3 $^{-021}$ 3 $^{-021}$ 3 $^{-021}$ 3 $^{-021}$ 3 $^{-021}$ 3 $^{-021}$ 3 $^{-021}$ 3 $^{-021}$ 3 $^{-021}$ 3 $^{-021}$ 3 $^{-02$	Toler- ance		E9	+ 0.3	-	Toler- ance			+ 0.3	-	Toler- ance		JS9	+ 0.3	-	Toler- ance			+ 0.3	-
10 10 $0 + \frac{9}{922}$ - - 2-M4 10H 10 $0 + \frac{9}{922}$ 3 ± anz 11.4 2-M4 10H 10 $0 + \frac{9}{922}$ 3 ± anz 11.4 2-M4 11H 11 $0 + \frac{9}{922}$ 3 ± anz 11.4 2-M4 11H 11 $0 + \frac{9}{922}$ 3 ± anz 12.8 2-M4 11J 11 $0 + \frac{9}{922}$ 2-M4 11P 11 $0 + \frac{9}{922}$ 2-M4 12P 12 $0 + \frac{9}{922}$ 2-M4 12P 12 $0 + \frac{9}{922}$ 2-M4 12P 12 $0 + \frac{9}{92}$ 2-M4 12P 12 2-M4 12P 12 $0 + \frac{9}{92}$ 2-M4 12P 12	8		-	-		8H	-	-	9.4		8J		3 ± 0.0125	9.4		8P				
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	9		-	-	2-M4	9H	-		10.4	2-M4	9J	-	3 ± 0.0125	10.4	2-M4	9P	-		10.4	2-M4
1212 12^{+018} 4^{+0201} 5^{+010} 12.1 12^{+018} 4^{+0018} 5^{+010} 13.8 $2-M4$ 121 12^{+018} 4^{+0018} 5^{+000} 13.8 $2-M4$ 121 12^{+018} 4^{+0018} 5^{+000} 13.8 $2-M4$ 141 14^{+0018} 5^{+0008} 16.3 $2-M4$ 141 14^{+0018} 5^{+0008} 15^{-0018} 5^{+0008} 5^{-0002} 16.3 $2-M4$ 151 15^{+018} 5^{+0008} 15^{-018} 5^{+0008} 5^{-0002} 16.3 $2-M4$ 151 15^{+018} 5^{+0008} 15^{-0018} 5^{+0008} 16.3 $2-M4$ 151 15^{+018} 5^{+0008} 16.3 $2-M4$ 161 16^{+0018} 5^{+0008} 16.3 $2-M4$ 161 16^{+0018} 5^{+0009} 16.3 $2-M4$ 171 17^{+018} 5^{+0009} 15^{-0018} 5^{+0009} 16.3 $2-M4$ 161 16^{+0018} 5^{+0009} 12.8 $2-M5$ 12.8 $2-M5$ 12.8 $2-M4$ 171 17^{+018} 5^{+0009} 12.8 $2-M5$	10		-	-			-	-					3 ± 0.0125		2-M4					
1414 $+^{0.018}_{0.00}$ 5 $+^{0.000}_{0.000}$ 16.02-M414J14 $+^{0.018}_{0.000}$ 5 $\pm^{0.0000}_{0.0000}$ 16.32-M414J14 $+^{0.018}_{0.0000}$ 5 $\pm^{0.0000}_{0.00000}$ 16.32-M415J15 $+^{0.018}_{0.00000}$ 5 $\pm^{0.0000}_{0.0000000000000000000000000000$	11	-		-	2-M4				12.8	2-M4		-	4 ± 0.0150	12.8	2-M4	11P	-		12.8	2-M4
1515 $+^{0.08}$ 5 $+^{0.08}$ 17.02.M415H15 $+^{0.08}$ 5 $+^{0.09}$ 17.32.M415J15 $+^{0.018}$ 5 ± 0.002 17.32.M415P15 $+^{0.018}$ 5 $-^{0.022}$ 17.32.M41616 $+^{0.018}$ 5 ± 0.002 18.32.M416H16 $+^{0.018}$ 5 ± 0.002 18.32.M416P16 $+^{0.018}$ 5 $-^{0.022}$ 18.32.M41717 $+^{0.018}$ 5 ± 0.002 10.02.M417H17 $+^{0.018}$ 5 ± 0.002 18.32.M417P17 $+^{0.018}$ 5 -0.022 18.32.M41818 $+^{0.018}$ 5 $+^{0.020}$ 0.22.M417H17 $+^{0.018}$ 5 ± 0.002 18.32.M417P17 $+^{0.018}$ 5 -0.022 2.0.82.M41919 $+^{0.021}$ 5 ± 0.002 2.M419H19 $+^{0.021}$ 6 $+^{0.020}$ 2.8.82.M52.1.82.M52.0.82.M4202.0.4022.0.402.0.402.0.4022.4.802.4.52.0.52.1.82.4.52.1.82.4.52020 $+^{0.021}$ 7 ± 0.021 6 ± 0.020 2.4.82.4.52.1.82.4.52.4.82.4.52.1.82.4.52122 $+^{0.021}$ 7 ± 0.021 2.4.62.4.6202.4.82.4.52.4.82.4.52.4.82.4.52.4.82.4.52222 $+^{0.021}$ 7 ± 0.021 2.4.82.4.6022.4.82.4.52.4.82.4.52.4.8	12	•					•	•			12J		4 ± 0.0150	13.8	2-M4	12P			13.8	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	14	•		16.0	2-M4		-	-	16.3			-	5 ± 0.0150	16.3	2-M4	14P	-			2-M4
1717 0 0 2 -M417 1 <t< td=""><td>15</td><td></td><td></td><td></td><td></td><td></td><td>-</td><td></td><td>17.3</td><td>2-M4</td><td></td><td></td><td>5 ± 0.0150</td><td>17.3</td><td>2-M4</td><td></td><td></td><td></td><td>17.3</td><td></td></t<>	15						-		17.3	2-M4			5 ± 0.0150	17.3	2-M4				17.3	
18 18 0 000 2-M4 18H 18 0 000 2-M5 18J 18 0 000 2-M5 18J 18 0 000 2-M5 18P 18 0 000 2-M5 18P 18 0 000 2-M5 19P 19 0 000 2-M5 19P 19 0 000 2-M5 19P 19 0 000 2-M5 20P 2-M5 22P 2P <	16			18.0	2-M4				18.3	2-M4		-	5 ± 0.0150	18.3	2-M4		-		18.3	2-M4
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	17	-			2-M4		-						5 ± 0.0150	19.3	2-M4				19.3	
2020 $^{+0.021}_{+0.021}$ 5 $^{+0.020}_{+0.021}$ 6 $^{+0.030}_{-0.021}$ 22.82MS20 $^{20}_{+0.021}$ 6 $^{20}_{-0.021}$ 6 $^{-0.021}_{-0.021}$ 22.82MS2.022 $^{2}_{+0.021}$ 7 $^{2}_{+0.022}$ 2.0 $^{2}_{-0.021}$ 6 $^{+0.030}_{-0.021}$ 2.4.8 $^{2}_{-0.051}$ $^{2}_{-0.051}$ $^{2}_{-0.021}$ $^{6}_{-0.022}$ $^{2}_{-0.021}$ $^{6}_{-0.022}$ $^{2}_{-0.021}$ $^{6}_{-0.022}$ $^{2}_{-0.021}$ $^{6}_{-0.022}$ $^{2}_{-0.021}$ $^{6}_{-0.022}$ $^{2}_{-0.021}$ <	18	•		20.0	2-M4			-	20.8	2-M5	18J	-	6 ± 0.0150	20.8	2-M5	18P	-		20.8	2-M5
2222 + $\frac{0}{0021}$ 7 + $\frac{0}{0052}$ 25.02M622H22 + $\frac{0}{0021}$ 6 + $\frac{0}{0030}$ 24.82-M522J22 + $\frac{0}{0021}$ 6 + $\frac{0}{0030}$ 2-M624J24 + $\frac{0}{0021}$ 8 + $\frac{0}{0021}$ 2-M625J25 + $\frac{0}{0021}$ 8 + $\frac{0}{0021}$ <t< td=""><td>19</td><td></td><td></td><td>21.0</td><td>2-M4</td><td>19H</td><td></td><td></td><td>21.8</td><td>2-M5</td><td>19J</td><td></td><td>6 ± 0.0150</td><td>21.8</td><td>2-M5</td><td>19P</td><td>-</td><td></td><td>21.8</td><td>2-M5</td></t<>	19			21.0	2-M4	19H			21.8	2-M5	19J		6 ± 0.0150	21.8	2-M5	19P	-		21.8	2-M5
2424 $\frac{9}{0021}$ 7 $\frac{9001}{10025}$ 27.02-M624H24 $\frac{9021}{0021}$ 8 $\frac{9001}{0021}$ 27.32-M624H24 $\frac{9021}{0021}$ 8 $\frac{9001}{0021}$ 27.32-M624P24 $\frac{9021}{0021}$ 8 $\frac{9001}{0021}$ 27.32-M624P24 $\frac{9021}{0021}$ 8 $\frac{9001}{0021}$ 27.32-M625P25 $\frac{9021}{0021}$ 8 $\frac{9002}{0021}$ 8 $\frac{9002}{0021}$ 8 $\frac{9002}{0021}$ 8 $\frac{9002}{0021}$ 8 $\frac{90021}{0021}$ 8 $\frac{90021}$	20	•		22.0	2-M4			-	22.8	2-M5	20J	•	6 ± 0.0150	22.8	2-M5	20P			22.8	
2525 $^{+0.01}_{+0.025}$ 28.02-M625H $^{25+}_{+0.021}$ 8 $^{+0.02}_{+0.025}$ 8 $^{+0.02}_{+0.025}$ 8 $^{+0.02}_{+0.025}$ 8 $^{+0.02}_{+0.025}$ 8 $^{+0.02}_{+0.025}$ 8 $^{+0.02}_{+0.025}$ 8 $^{+0.02}_{+0.025}$ 8 $^{+0.02}_{-0.055}$ 10 $^{+0.02}_{-0.055}$ 10 $^{+0.02}_{-0.055}$ 10 $^{+0.02}_{-0.055}$ 10 $^{+0.02}_{-0.055}$ 10 $^{+0.02}_{-0.055}$ 10 $^{+0.02}_{-0.055}$ 10 $^{+0.02}_{-0.055}$ 10 $^{+0.02}_{-0.055}$ 10 $^{+0.02}_{-0.055}$ 10 $^{+0.02}_{-0.055}$ 10 $^{+0.02}_{-0.055}$ 10 $^{+0.02}_{-0.055}$ 10 $^{+0.02}_{-0.055}$ 10 $^{+0.02}_{-0.055}$ 10 $^{+0.02}_{-0.055}$	22			25.0	2-M6			-	24.8	2-M5	22J		6 ± 0.0150	24.8	2-M5				24.8	2-M5
2828 $^{+0021}_{+0025}$ 31.02-M628H28 $^{+0021}_{+0025}$ 8 $^{+002$	24	-		27.0	2-M6	24H	-			2-M6	24J	-	8 ± 0.0180	27.3	2-M6	24P	-			2-M6
3030 $+ 0.021$ 7 $+ 0.005$ 33.02-M630H30 $+ 0.221$ 8 $+ 0.036$ 33.32-M630J30 $+ 0.021$ 8 ± 0.018 33.32-M630P30 $+ 0.021$ 8 $- 0.051$ 33.32-M63232 $+ 0.025$ 10 $+ 0.051$ 35.52-M832H32 $+ 0.025$ 10 ± 0.018 35.32-M832P32 $+ 0.025$ 10 ± 0.018 35.32-M835P35 $+ 0.025$ 10 $- 0.015$ 38.32-M83838 $+ 0.025$ 10 ± 0.025 31.52-M838H38 $+ 0.025$ 10 $+ 0.025$ 12 ± 0.0215 41.32-M838P38 $+ 0.025$ 10 $- 0.015$ 38.32-M84040 $+ 0.025$ 10 ± 0.025 43.52-M840H40 $+ 0.025$ 12 $+ 0.025$ 12 ± 0.025 43.32-M840P40 $+ 0.025$ 12 $- 0.018$ 43.32-M84242 $+ 0.025$ 12 ± 0.025 43.52-M842H42 $+ 0.025$ 12 $+ 0.025$ 12 ± 0.025 45.32-M840P40 $+ 0.025$ 12 $- 0.018$ 43.32-M84545 $+ 0.025$ 12 ± 0.025 45.52-M842H <t< td=""><td>25</td><td></td><td></td><td>28.0</td><td>2-M6</td><td></td><td>-</td><td>-</td><td>28.3</td><td>2-M6</td><td>25J</td><td>-</td><td>8 ± 0.0180</td><td>28.3</td><td>2-M6</td><td>25P</td><td></td><td></td><td>28.3</td><td>2-M6</td></t<>	25			28.0	2-M6		-	-	28.3	2-M6	25J	-	8 ± 0.0180	28.3	2-M6	25P			28.3	2-M6
3232 $+ 0.025$ 10 $+ 0.0051$ 35.52-M832H32 $+ 0.025$ 10 $+ 0.0051$ 35.32-M832L32 $+ 0.025$ 10 $+ 0.0051$ 35.32-M832L32 $+ 0.025$ 10 $+ 0.0051$ 35.32-M832L32 $+ 0.025$ 10 $+ 0.0051$ 35.32-M836.32-M838.338 $+ 0.025$ 10 $+ 0.025$ 36.32-M838.32-M838.32-M838.32-M838.32-M838.32-M838.32-M838.32-M838.32-M838.32-M838.32-M838.32-M838.32-M838.32-M838.32-M838.32-M838.32-M838.32-M1038.3	28	-		31.0	2-M6	28H	-		31.3	2-M6	28J	-	8 ± 0.0180	31.3	2-M6	28P	-		31.3	2-M6
3535 $+0.025$ 10 $+0.0025$ 38.52-M835H35 $+0.025$ 10 $+0.036$ 38.32-M835J35 $+0.025$ 10 $+0.036$ 38.32-M838.32-M83838 $+0.025$ 10 $+0.025$ 41.52-M838H38 $+0.025$ 10 $+0.036$ 41.32-M838J38 $+0.025$ 10 ± 0.018 38.32-M838P38 $+0.025$ 10 -0.035 38.32-M84040 $+0.025$ 10 $+0.025$ 43.52-M840H40 $+0.025$ 12 $+0.035$ 43.32-M840J40 $+0.025$ 12 ± 0.0215 43.32-M840P40 $+0.025$ 12 -0.018 43.32-M84242 $+0.025$ 12 ± 0.025 45.52-M842H42 $+0.025$ 12 $+0.035$ 12 ± 0.0215 45.32-M840P40 $+0.025$ 12 -0.018 43.32-M84545 $+0.025$ 12 ± 0.025 45.52-M845H45 $+0.025$ 14 $+0.043$ 45.32-M842H42 $+0.025$ 12 $+0.018$ 45.32-M84545 $+0.025$ 12 ± 0.025 48.52-M845H45 $+0.025$ 14 $+0.043$ 48.82-M1045J45 $+0.025$ 14 $+0.043$ 48.82-M104848 $+0.025$ 12 ± 0.025 51.82-M848H48 $+0.025$ 14 $+0.043$ 51.82-M1048J48 $+0.025$ 14 $+0.043$ 51.82-M105050 $+0.025$ 12 ± 0.025 51.82-M1050J50 $+0.025$ 14 $\pm 0.$	30			33.0	2-M6		-	8 + 0.036	33.3	2-M6		-	8 ± 0.0180	33.3	2-M6			8 - 0.015 - 0.051	33.3	2-M6
38 38 $+ \frac{0.025}{0.025}$ 10 $+ \frac{0.001}{0.025}$ 41.5 2-M8 38H 38 $+ \frac{0.025}{0.025}$ 10 $+ \frac{0.001}{0.025}$ 41.3 2-M8 38H 38 $+ \frac{0.025}{0.025}$ 10 $+ \frac{0.015}{0.025}$ 41.3 2-M8 38H 38 $+ \frac{0.025}{0.025}$ 10 $+ \frac{0.015}{0.025}$ 41.3 2-M8 40 40 $+ \frac{0.025}{0.025}$ 10 $+ \frac{0.051}{0.051}$ 43.5 2-M8 40H 40 $+ \frac{0.025}{0.025}$ 12 ± 0.0215 43.3 2-M8 40P 40 $+ \frac{0.025}{0.025}$ 12 ± 0.0215 43.3 2-M8 40P 40 $+ \frac{0.025}{0.025}$ 12 ± 0.0215 43.3 2-M8 40P 40 $+ \frac{0.025}{0.025}$ 12 ± 0.0215 43.3 2-M8 40P 40 $+ \frac{0.025}{0.025}$ 12 ± 0.0215 43.3 2-M8 42P 42 $+ \frac{0.025}{0.025}$ 12 ± 0.0215 43.3 2-M8 42P 42 $+ \frac{0.025}{0.025}$ 12 ± 0.0215 45.3 2-M8 45.4 2-M8 45.4 2-M8 48.4 2-M10 45.4 2-M10 45.3 2-M8 45.4 2-M10 48.8 2-M10 48.8 2-M10 48.8 2-M10 48.8 2-M10 48.8 2-M10	32	-		35.5	2-M8		-	-	35.3	2-M8	32J	-	10 ± 0.0180	35.3	2-M8	32P	-		35.3	2-M8
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	35	-		38.5	2-M8			v	38.3	2-M8	35J	-	10 ± 0.0180	38.3	2-M8	35P	-		38.3	2-M8
4242 $^{0025}_{0025}$ 12 $^{0035}_{0025}$ 45.52-M842H42 $^{0025}_{0025}$ 12 $^{0005}_{0025}$ 12 $^{0005}_{0025}$ 12 $^{0005}_{0025}$ 12 $^{0005}_{0025}$ 12 $^{0005}_{0025}$ 12 $^{0005}_{0025}$ 12 $^{0005}_{0025}$ 12 $^{0005}_{0025}$ 12 $^{0005}_{0025}$ 12 $^{0005}_{0025}$ 14 $^{0005}_{0025}$	38	-		41.5	2-M8		-	-	41.3	2-M8	38J	-	10 ± 0.0180	41.3	2-M8	38P	-		41.3	2-M8
45 $45 + 0.025$ $12 + 0.032$ 48.5 $2-M8$ $45H$ $45 + 0.025$ $14 + 0.043$ 48.8 $2-M10$ $45J$ $45 + 0.025$ $14 + 0.0215$ 48.8 $2-M10$ $45J$ $45 + 0.025$ $14 + 0.0215$ 48.8 $2-M10$ $45J$ $45 + 0.025$ $14 + 0.0215$ 48.8 $2-M10$ $48J$ $48 + 0.025$ $14 + 0.0215$ 51.8 $2-M10$ $48P$ $48P + 0.025$ $14 - 0.018$ 51.8 $2-M10$ $48J$ $48 + 0.025$ $14 + 0.0215$ 51.8 $2-M10$ $48P$ $48P + 0.025$ $14 - 0.018$ 51.8 $2-M10$ 50 $50 + 0.025$ 51.8 $2-M10$ $48J$ $48 + 0.025$ $14 + 0.0215$ 51.8 $2-M10$ $48P$ $48P + 0.025$ $14 - 0.018$ 51.8 $2-M10$ 50 $50 + 0.025$ $14 + 0.0215$ 51.8 $2-M10$ $50P + 0.025$ $14 + 0.0215$ 53.8 $2-M10$ $50P + 0.025$ $14 - 0.018$ </td <td>40</td> <td></td> <td></td> <td>43.5</td> <td>2-M8</td> <td></td> <td></td> <td>v</td> <td>43.3</td> <td>2-M8</td> <td>40J</td> <td></td> <td>12 ± 0.0215</td> <td>43.3</td> <td>2-M8</td> <td>40P</td> <td>-</td> <td>$12 \ \ {}^{-\ 0.018}_{-\ 0.061}$</td> <td>43.3</td> <td>2-M8</td>	40			43.5	2-M8			v	43.3	2-M8	40J		12 ± 0.0215	43.3	2-M8	40P	-	$12 \ \ {}^{-\ 0.018}_{-\ 0.061}$	43.3	2-M8
48 48 $^{0025}_{0032}$ 51.5 2-M8 48H 48 $^{0025}_{0032}$ 51.8 2-M10 48 48 $^{0025}_{0032}$ 51.8 2-M10 48P 48 $^{0025}_{0032}$ 51.8 2-M10 51.8 2-M10 51.8 2-M10 50P 50 $^{0005}_{002}$ 14 $^{0005}_{0032}$ 51.8 2-M10 50P 50 $^{0005}_{002}$ 14 $^{0005}_{0032}$ 51.8 2-M10 50P 50 $^{0005}_{002}$ 14 $^{0005}_{0032}$ 14 $^{0005}_{0032}$ 14 $^{0005}_{0032}$ 14 $^{0005}_{0032}$ 14 $^{0005}_{0032}$ 14 $^{0005}_{0032}$ 14 $^{0005}_{0032}$ 14 $^{0005}_{0032}$ 14 $^{0005}_{0032}$ 14 $^{0005}_{0032}$ 14 $^{0005}_{0032}$ 14 $^{0005}_{0032}$ 14 $^{0005}_{0032}$ 14	42	-		45.5	2-M8		-	-	45.3	2-M8	42J	-	12 ± 0.0215	45.3	2-M8	42P		$12 \ \ {}^{-\ 0.018}_{-\ 0.061}$	45.3	2-M8
50 50 $^{+0.075}_{0}$ 53.5 2-M8 50H $50^{+0.025}_{0}$ 14 $^{+0.043}_{0}$ 53.8 2-M10 50 $^{+0.025}_{0}$ 14 $^{+0.025}_{0}$ 16 $^{+0.01}_{0}$ 10 10 10 10 10 10 10 10 10 10 10 10 10 10	45	$45 {}^{+ 0.025}_{0}$	$12 \ ^{+ \ 0.075}_{+ \ 0.032}$	48.5	2-M8	45H	$45^{+0.025}_{0}$	$14 {}^{+ 0.043}_{0}$	48.8	2-M10	45J	$45 \begin{array}{c} + 0.025 \\ 0 \end{array}$	14 ± 0.0215	48.8	2-M10	45P	$45 {}^{+ 0.025}_{0}$	$14 \ \ {}^{- 0.018}_{- 0.061}$	48.8	2-M10
55 55 + 0.030 0 15 + 0.035 60.0 2-M10 55H 55 + 0.030 0 56H 16 + 0.043 0 - 0.051 59.3 2-M10 55P 55 + 0.030 0 - 0.061 16 - 0.018 0 - 0.061 59.3 2-M10 56 56 + 0.030 0 - 0.032 61.0 2-M10 56H 56 + 0.030 0 - 0.061 16 ± 0.0215 59.3 2-M10 55P 55 + 0.030 0 - 0.061 16 ± 0.0215 59.3 2-M10 56P 56 + 0.030 0 - 0.061 60.3 2-M10	48	-		51.5	2-M8	48H		-	51.8	2-M10	48J	-		51.8	2-M10	48P	-		51.8	2-M10
56 56 $^{+0.030}_{0}$ 15 $^{+0.075}_{+0.032}$ 61.0 2-M10 56H 56 $^{+0.030}_{0}$ 16 $^{+0.043}_{0}$ 60.3 2-M10 56J 56 $^{+0.030}_{0}$ 16 $^{+0.031}_{-0.0215}$ 60.3 2-M10 56P 56 $^{+0.030}_{0}$ 16 $^{-0.018}_{-0.061}$ 60.3 2-M10	50	0	$12 \ ^{+ \ 0.075}_{+ \ 0.032}$	53.5	2-M8		•	$14 \ {}^{+ \ 0.043}_{0}$	53.8	2-M10	50J	$50 {}^{+ 0.025}_{0}$	14 ± 0.0215	53.8	2-M10	50P	$50 {}^{+ 0.025}_{0}$	$14 \ \ {}^{- 0.018}_{- 0.061}$	53.8	2-M10
	55			60.0	2-M10			-	59.3	2-M10	55J	-	16 ± 0.0215	59.3	2-M10	55P	-		59.3	2-M10
60 +0.030 15 +0.075 65.0 2-M10 60H 60 +0.030 18 +0.030 18 +0.031 18 +0.031 18 ±0.0215 64.4 2-M10 60P 60 60 18 -0.018 64.4 2-M10	56	$56 {}^{+ 0.030}_{0}$	$15 \ ^{+ \ 0.075}_{+ \ 0.032}$	61.0	2-M10	56H	$56 {}^{+ 0.030}_{0}$	$16 {}^{+ 0.043}_{0}$	60.3	2-M10	56J	$56 {}^{+ 0.030}_{0}$	16 ± 0.0215	60.3	2-M10	56P	$56^{+0.030}_{0}$	$16 \ {}^{- 0.018}_{- 0.061}$	60.3	2-M10
	60	$60 {}^{+ 0.030}_{0}$	$15 \ ^{+ 0.075}_{+ 0.032}$	65.0	2-M10	60H	$60 {}^{+ 0.030}_{0}$	$18 \ ^{+ \ 0.043}_{0}$	64.4	2-M10	60J	$60 \ ^{+ \ 0.030}_{0}$	18 ± 0.0215	64.4	2-M10	60P	$60 {}^{+ 0.030}_{0}$	$18 \ {}^{- 0.018}_{- 0.061}$	64.4	2-M10

Мо	odels complia	nt with the ne	w motor standar	ds
Nominal bore diameter	Bore diameter [d1 • d2]	Keyway width [W1 • W2]	Keyway height [T1 • T2]	Set screw hole [M]
Tolerance	G7, F7	H9	+ 0.3	-
14N	$14 ^{+ 0.024}_{+ 0.006}$	5 ^{+ 0.030}	16.3	2-M4
19N	$19 \ ^{+ \ 0.028}_{+ \ 0.007}$	6 ^{+0.030}	21.8	2-M5
24N	$24 \ ^{+ \ 0.028}_{+ \ 0.007}$	8 + 0.036	27.3	2-M6
28N	$28 \ ^{+ \ 0.028}_{+ \ 0.007}$	8 + 0.036	31.3	2-M6
38N	$38 \ ^{+ \ 0.050}_{+ \ 0.025}$	$10^{+0.036}_{0}$	41.3	2-M8
42N	$42 {}^{+ 0.050}_{+ 0.025}$	12 + 0.043	45.3	2-M8
48N	$48 \ ^{+ \ 0.050}_{+ \ 0.025}$	$14^{+0.043}_{0}$	51.8	2-M10
55N	$55 \ ^{+ \ 0.060}_{+ \ 0.030}$	$16 {}^{+ 0.043}_{0}$	59.3	2-M10
60N	$60 \ ^{+ \ 0.060}_{+ \ 0.030}$	$18 {}^{+ 0.043}_{0}$	64.4	2-M10

Distance from Set Screw Edge

Model	Distance from set screw edge [mm]
SFS-05	7
SFS-06	9
SFS-08	10
SFS-09	10
SFS-10	12
SFS-12	12
SFS-14	15

MODELS	
SFC	
SFS	
SFF	
SFM	
SFH	

Items Checked for Design Purposes

Special Items to Take Note of

You should note the following to prevent any problems.

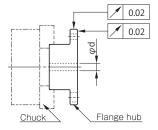
(1) Always be careful of parallel, angular, and axial misalignment.

(2) Always tighten bolts with the specified torque.

Precautions for Handling

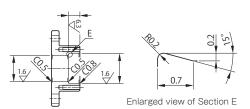
SFS models are delivered as components. Select whether to assemble by mounting flange hubs on each shaft and coupling shafts in both directions by mounting the element last, while centering, or to assemble by completing couplings first and then inserting them onto the shafts.

When using the assembly method that completes couplings first, take extra precautions when handling couplings. Subjecting assembled couplings to strong shocks may affect mounting accuracy and cause the parts to break during use.


- (1) Couplings are designed for use within an operating temperature range of -30° C to 120°C. Although the couplings are designed to be waterproof and oilproof, do not subject them to excessive amounts of water and oil as it may cause part deterioration.
- (2) Handle the element with care as it is made of a thin stainless steel metal disc, also making sure to be careful so as not to injure yourself.
- (3) For frictional coupling types, do not tighten up pressure bolts until after inserting the mounting shaft.

Centering and Finishing When Drilling Bores in Flange Hubs

Keep the following in mind when processing bore diameters in pilotbore products.

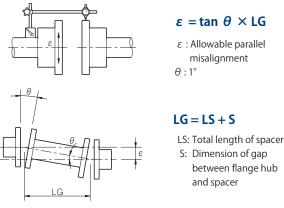

Centering

After adjusting the chuck so that runout of each flange hub is no more than the precision of the figure below, finish the inner diameter, guided by the figure below.

Locking collar specifications

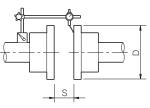
Finish as shown in the figure below if you are processing for a connection by means of locking collar.

Finishing/mounting example


The example shows a pilot-bore type of flange hub processed for a POSI-LOCK PSL-K, a shaft lock made by Miki Pulley, and connected to a straight shaft.

Centering

Parallel misalignment (ε)


Lock the dial gauge in place on one shaft and then measure the runout of the paired flange hub's outer periphery while rotating that shaft. Since couplings on which the elements (discs) are a set SFS(S) types do not allow parallel misalignment, get as close to zero as possible. For couplings that allow the entire length to be freely set SFS(G) types, use the following formula to calculate allowable parallel misalignment.

Angular deflection(θ)

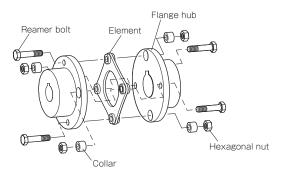
Lock the dial gauge in place on one shaft and then measure the runout of the end surface near the paired flange hub's outer periphery while rotating that shaft.

Adjust runout B so that $\theta \leq 1^{\circ}$ in the following formula.

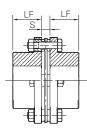
$\mathbf{B} = \mathbf{D} \times \mathbf{tan} \ \boldsymbol{\theta}$

- B: Runout
- D: Flange hub outer diameter

$\theta:1^{\circ}$


Axial displacement (S)

In addition, restrict the dimension between flange hub faces (S in the diagram) within the allowable error range for axial displacement with respect to a reference value. Note that the tolerance values were calculated based on the assumption that both the level of parallel misalignment and angular deflection are zero. Adjust to keep this value as low as possible.

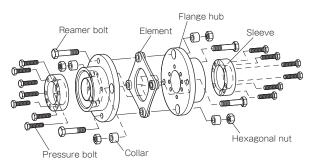

*On the SFS(S), this is the dimension of the gap between two flange hubs. On the SFS(W/G), dimension S is the gap between the flange hub and the spacer.

Mounting

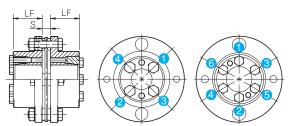
This assembly method mounts a flange hub on each shaft of the SFS models and couples shafts in both directions by mounting the element last, while centering.

- (1) Remove any rust, dust, oil residue, etc. from inner diameter surfaces of the shaft and flange hubs. In particular, never allow oil or grease containing antifriction or other agent (molybdenum-, silicon-, or fluorine-based), which would dramatically affect the friction coefficient, to contact the surface.
- (2) Insert each shaft far enough into the flange hub that the paired mounting shaft touches the shaft along the entire length of the flange hub (LF dimension), as shown in the diagram below, and does not interfere with the elements, spacers or the other shaft.

- (3) Mount the other flange hub on the paired mounting shaft as described in steps (1) and (2).
- (4) Keep the width of the dimension between flange hub faces (S dimension in the diagram) within the allowable error range for axial misalignment with respect to the reference value. Note that the tolerance values were calculated based on the assumption that both the level of parallel misalignment and angular deflection are zero. Adjust to keep this value as low as possible.


Coupling size	05	06	08	09	10	12	14
S [mm]	5	6	6	8	10	11	12

- (5) Insert the element into the gap between the two flange hubs, and then mount it with the reamer bolt for locking the element in place. Check that the element is not deformed. If it is, it may be under an axial force or there may be insufficient lubrication between the collar, bolt, and disc, so adjust to bring it to normal. The situation may be improved by applying a small amount of machine oil to the bearing surface of the reamer bolt. However, never use any oil or grease containing antifriction or other agent (molybdenum-, silicon-, or fluorine-based) which would dramatically affect the friction coefficient.
- (6) Use a calibrated torque wrench to tighten all the reamer bolts to the tightening torques of the table below.


Coupling size	05	06	08	09	10	12	14
Reamer bolt size	M5	M6	M6	M8	M8	M10	M12
Tightening torque [N•m] Black oxide finish (standard) specification	8	14	14	34	34	68	118
Tightening torque [N•m] Electroless nickel plating [° C] specification	6	11	11	26	26	51	90

Mounting (Frictional Coupling Hub Types)

This assembly method mounts a flange hub on each shaft of the SFS (frictional coupling hub) type and couples both shafts by mounting the element last while centering.

- (1) Loosen the pressure bolts of the flange hubs, check that the sleeve can move freely, and then remove any rust, dust, oil residue, etc. from the inner diameter surfaces of the shaft and flange hubs. In particular, never allow oil or grease containing antifriction or other agent (molybdenum-, silicon-, or fluorine-based), which would dramatically affect the friction coefficient, to contact the surface.
- (2) Insert each shaft far enough into the flange hub that the paired mounting shaft touches the shaft along the entire length of the flange hub (LF dimension), as shown in the diagram below, and does not interfere with the elements, spacers or the other shaft. Then, holding them in place, tighten the pressure bolts evenly, a little at a time on the diagonal, following the tightening sequence shown in the figure below.

- (3) Mount the other flange hub on the paired mounting shaft as described in steps (1) and (2).
- (4) Keep the width of the dimension between flange hub faces (S dimension in the diagram) within the allowable error range for axial misalignment with respect to the reference value. Note that the tolerance values were calculated based on the assumption that both the level of parallel misalignment and angular deflection are zero. Adjust to keep this value as low as possible.

Coupling size	06	08	09	10	12	14
S [mm]	6	6	8	10	11	12

- (5) Insert the element into the gap between the two flange hubs, and then mount it with the reamer bolt for locking the element in place. Check that the element is not deformed. If it is, it may be under an axial force or there may be insufficient lubrication between the collar, bolt, and disc, so adjust to bring it to normal. The situation may be improved by applying a small amount of machine oil to the bearing surface of the reamer bolt. However, never use any oil or grease containing antifriction or other agent (molybdenum-, silicon-, or fluorine-based) which would dramatically affect the friction coefficient.
- MODELS SFC SFS SFF SFM SFH
- (6) Use a calibrated torque wrench to tighten all the reamer and pressure bolts to the tightening torques of the table below.

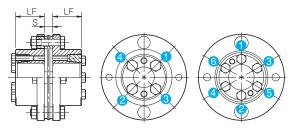
Coupling size	06	08	09	10	12	14
Reamer bolt size	M6	M6	M8	M8	M10	M12
Tightening torque [N·m]	14	14	34	34	68	118
Pressure bolt size	M5	M6	M6	M6	M8	M8
Tightening torque [N·m]	8	14	14	14	34	34

(7) To protect against initial loosening of the pressure bolts, we recommend operating for a set period of time and then retightening to the appropriate tightening torque.

Items Checked for Design Purposes

Mounting (When Mounted After Coupling Is Completed)

This assembly method first completes the coupling and then inserts it onto the shaft.


- (1) Remove any rust, dust, oil or the like from the inner diameter surfaces of the shaft and flange hubs. In particular, never allow oil or grease containing antifriction or other agent (molybdenum-, silicon-, or fluorine-based), which would dramatically affect the friction coefficient, to contact the surface.
 - For types that use frictional coupling, loosen the flange hub's pressure bolt and check that the sleeve can move freely.
- (2) Be careful when inserting the couplings into the shaft so as not to apply excessive force of compression or tensile force to the element.

Be particularly careful not to mistakenly apply excessive compression force when inserting couplings into the paired shaft after mounting on one shaft.

(3) For frictional coupling types, with the pressure bolts loosened, make sure that couplings move gently in the axial and rotational directions.

Readjust the centering of the two shafts if the couplings fail to move smoothly enough.

(4) Insert each shaft far enough into the flange hub that the paired mounting shaft touches the shaft along the entire length of the flange hub (LF dimension), as shown in the diagram below. Then position it so that it does not interfere with the elements, spacers or the other shaft and lock it in place. For frictional coupling types, tighten the pressure bolts evenly, a little at a time on the diagonal, following the tightening sequence shown in the figure below.

(5) Keep the width of the dimension between flange hub faces (S dimension in the diagram) within the allowable error range for axial misalignment with respect to the reference value. Note that the tolerance values were calculated based on the assumption that both the level of parallel misalignment and angular deflection are zero. Adjust to keep this value as low as possible.

Coupling size	05	06	08	09	10	12	14
S [mm]	5	6	6	8	10	11	12

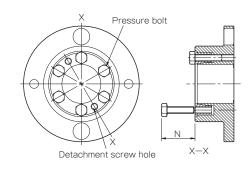
(6) Use a calibrated torque wrench to tighten all the pressure bolts to the appropriate tightening torques of the table below.

Coupling size	06	08	09	10	12	14
Pressure bolt size	M5	M6	M6	M6	M8	M8
Tightening torque [N·m]	8	14	14	14	34	34

(7) To protect against initial loosening of the pressure bolts, we recommend operating for a set period of time and then retightening to the appropriate tightening torque.

Removal

- (1) Check to confirm that there is no torque or axial direction load being applied to the coupling. There may be cases where a torque is applied to the coupling, particularly when the safety brake is being used. Make sure to verify that this is not occurring before removing parts.
- (2) Loosen all the pressure bolts placing pressure on the sleeve until the gap between bearing seat and sleeve is about 2 mm.

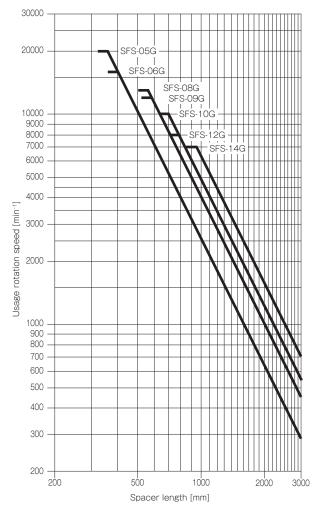


In the case of a tapered coupling system that tightens a pressure bolt from the axial direction, the sleeve will be self-locking, so the coupling between flange hub and shaft cannot be released simply by loosening the pressure bolt. (Note that in some cases, a coupling can be released by loosening a pressure bolt.)

For that reason, when designing couplings, a space must be installed for inserting a detachment screw.

If there is no space in the axial direction, consult Miki Pulley.

(3) Pull out two of the pressure bolts loosened in step (2), insert them into detachment screw holes at two locations on the sleeve, and tighten them alternately, a little at a time. The coupling between the flange hub and shaft will be released.



Coupling size	06	08	09	10	12	14
Nominal diameter of pressure bolt × Length	M5 imes 20	M6 imes 24	M6 imes 24	M6 imes 24	$M8 \times 25$	M8 imes 25
Recommended N dimension	26	30	30	30	31.5	31.5

Limit Rotation Speed

For SFS(G) long spacer types, the speed at which the coupling can be used will vary with the length of spacer selected. Use the following table to confirm that the speed you will use is at or below the limit rotation speed. When a max. rotation speed is set for a specific type, that speed is the upper limit.

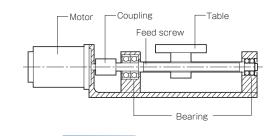
Points to Consider Regarding the Feed Screw System

Servo motor oscillation

Gain adjustment on the servo motor may cause the servo motor to oscillate.

Oscillation in the servo motor during operation can cause problems particularly with the overall natural frequency and electrical control systems of the feed screw system.

In order for these issues to be resolved, the torsional stiffness for the coupling and feed screw section and the moment of inertia and other characteristics for the system overall will need to be adjusted and the torsional natural frequency for the mechanical system raised or the tuning function (filter function) for the electrical control system in the servo motor adjusted during the design stage.


Stepper motor resonance

Stepper motors resonate at certain rotation speeds due to the pulsation frequency of the stepper motor and the torsional natural frequency of the system as a whole. To avoid resonance, either the resonant rotation speed must be simply skipped or the torsional natural frequency considered at the design stage.

Please contact Miki Pulley with any questions regarding servo motor oscillation or stepper motor resonance.

How to Find the Natural Frequency of a Feed Screw System

- Select a coupling based on the nominal and maximum torque of the servo motor or stepper motor.
- (2) Find the overall natural frequency, Nf, from the torsional stiffness of the coupling and feed screw, κ, the moment of inertia of driving side, J1, and the moment of inertia of driven side, J2, for the feed screw system shown below.

$Nf = \frac{1}{2\pi} \sqrt{\kappa \left(\frac{1}{J1} + \frac{1}{J2}\right)}$

- Nf: Overall natural frequency of a feed screw system [Hz]
- κ : Torsional stiffness of the coupling and feed screw [N·m/rad]
- J1: Moment of inertia of driving side [kg·m²]
- J2: Moment of inertia of driven side [kg·m²]

Selection Procedures

(1) Find the torque, Ta, applied to the coupling using the output capacity, P, of the driver and the usage rotation speed, n.

$$=9550 \times \frac{P[kW]}{n[min^{-1}]}$$

(2) Determine the factor κ from the load properties, and find the corrected torque, Td, applied to the coupling.

$Td = Ta \times K$ (Refer to the table below for values)

	Constant	Vibrations: Small	Vibrations: Medium	Vibrations: Large
Load properties	\square	\bigwedge	fron	Mr
К	1.0	1.25	1.75	2.25

For servo motor drive, multiply the maximum torque, Ts, by the usage factor $\rm K=1.2$ to 1.5.

$Td = Ts \times (1.2 \text{ to } 1.5)$

MODELS

SFM

SFH

(3) Set the size so that the rated coupling torque, Tn, is higher than the corrected torque, Td.

Tn ≧ Td

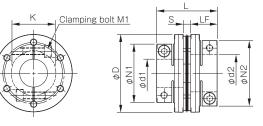
Ta [N·m]

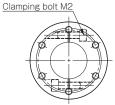
- (4) The rated torque of the coupling may be limited by the bore diameter of the coupling. See the table showing the bore diameters that limit rated torque.
- (5) Check that the mount shaft is no larger than the maximum bore diameter of the coupling.

Contact Miki Pulley for assistance with any device experiencing extreme periodic vibrations.

SFC SFS SFF

SFF(SS) Types Single Element/Clamping


Specifications


			Misalignment		Max. rotation	Torsional	Axial	Moment of	
Model	Rated torque [N•m]	Parallel [mm]	Angular [°]	Axial [mm]	Max. rotation speed [min - 1] 18000 18000 18000 18000 18000 18000 18000 18000 18000 18000 15000 15000 15000 13000	stiffness [N•m/rad]	stiffness [N/mm]	inertia [kg•m²]	Mass [kg]
SFF-040SS- 🗌 B- 🗌 B-8N	8	0.02	1	± 0.2	18000	15000	174	0.03 × 10 ⁻³	0.17
SFF-040SS- 🗆 B- 🗆 B-12N	12	0.02	1	± 0.2	18000	15000	174	0.03 × 10 ⁻³	0.17
SFF-050SS- 🗆 B- 🗆 B-25N	25	0.02	1	± 0.3	18000	32000	145	0.10 × 10 ⁻³	0.36
SFF-060SS- 🗆 B- 🗆 B-60N	60	0.02	1	± 0.3	18000	104000	399	0.22 × 10 ⁻³	0.52
SFF-060SS- 🗆 B- 🗆 B-80N	80	0.02	1	± 0.3	18000	104000	399	0.23 × 10 ⁻³	0.49
SFF-070SS- 🗆 B- 🗆 B-90N	90	0.02	1	± 0.5	18000	240000	484	0.40 × 10 ⁻³	0.72
SFF-070SS- 🗆 B- 🗆 B-100N	100	0.02	1	± 0.5	18000	240000	484	0.42 × 10 ⁻³	0.67
SFF-080SS- 🗆 B- 🗆 B-150N	150	0.02	1	± 0.5	17000	120000	96	0.79 × 10 ⁻³	1.04
SFF-080SS- 🗆 B- 🗆 B-200N	200	0.02	1	± 0.5	17000	310000	546	1.25 × 10 ⁻³	1.40
SFF-090SS- 🗆 B- 🗆 B-250N	250	0.02	1	± 0.6	15000	520000	321	1.54 × 10 ⁻³	1.62
SFF-090SS- 🗆 B- 🗆 B-300N	300	0.02	1	± 0.6	15000	520000	321	1.58 × 10 ⁻³	1.53
SFF-100SS- 🗆 B- 🗆 B-450N	450	0.02	1	± 0.65	13000	740000	540	3.27 × 10 ⁻³	2.53
SFF-120SS- 🗆 B- 🗆 B-600N	600	0.02	1	± 0.8	11000	970000	360	6.90 × 10 ⁻³	3.78

* Max. rotation speed does not take into account dynamic balance.

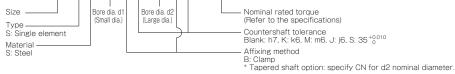
* Torsional stiffness values given are measured values for the element alone. * The moment of inertia and mass are measured for the maximum bore diameter.

Dimensions

Model	d1 [mm]	d2 [mm]	D [mm]	L [mm]	N1 • N 2 [mm]	LF [mm]	S [mm]	K [mm]	M 1 • M2 Qty - Nominal dia.	M1 • M2 Tightening torque [N • m]
SFF-040SS- 🗆 B- 🗆 B-8N	8 • 9 • 9. ₅₂₅	8 • 9 • 9.525 • 10 • 11 • 12 • 14 • 15 • 16	38	38.9	33	17.5	3.9	17	2-M4	3.4
SFF-040SS- 🗆 B- 🗆 B-12N	10 • 11 • 12 • 14 • 15 • 16	10 • 11 • 12 • 14 • 15 • 16	38	38.9	33	17.5	3.9	17	2-M4	3.4
SFF-050SS- 🗆 B- 🗆 B-25N	10 • 11 • 12 • 14 • 15 • 16 • 17 • 18 • 19	10 • 11 • 12 • 14 • 15 • 16 • 17 • 18 • 19 48		48.4	42	21.5	5.4	20	2-M5	7
	12 • 14 • 15 • 16 • 17 • 18 • 19	12 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 22			44				2-M6	14
SFF-060SS- 🗆 B- 🗆 B-60N	-	24 • 25 • 28	58	53.4	48	24	5.4	32	2-M5	7
	-	30			52				2-1415	/
	20 · 22	20 · 22			44				2-M6	14
SFF-060SS- 🗆 B- 🗌 B-80N	24 • 25 • 28	24 · 25 · 28	58	53.4	48	24	5.4	32	2-M5	7
	30	30			52				2 1015	,
SFF-070SS- 🗆 B- 🗆 B-90N	18 • 19	18 • 19 • 20 • 22 • 24 • 25	68	55.9	47	25	5.9	38	2-M6	14
	-	28 • 30 • 32 • 35	00	55.7	56	23	5.5	50	2 1110	
SFF-070SS- 🗆 B- 🗔 B-100N	20 • 22 • 24 • 25	20 • 22 • 24 • 25		55.9	47	25	5.9	38	2-M6	14
	28 • 30 • 32 • 35	28 • 30 • 32 • 35		5517	56	25	512	50		
SFF-080SS- 🗆 B- 🗆 B-150N	22 • 24 • 25	22 · 24 · 25		68.3	53	30	8.3	37	2-M8	34
	28 • 30 • 32 • 35	28 • 30 • 32 • 35		00.5	56	50	0.5	57	2-M6	14
	22 • 24 • 25	22 • 24 • 25			53					
SFF-080SS- 🗌 B- 🗌 B-200N	28 • 30 • 32 • 35	28 • 30 • 32 • 35	78	67.7	70	30	7.7	42	2-M8	34
	38	38			74					
SFF-090SS- 🗆 B- 🗆 B-250N	25 • 28	25 • 28 • 30 • 32	88	68.3	66	30	8.3	50	2-M8	34
	-	35 • 38 • 40 • 42	00	00.5	74	50	0.5	50	2 1110	51
SFF-090SS- 🗆 B- 🗔 B-300N	30 • 32	30 • 32		68.3	66	30	8.3	50	2-M8	34
	35 • 38 • 40 • 42	35 • 38 • 40 • 42		0015	74	50	0.5	50	2	5.
SFF-100SS- 🗆 B- 🗆 B-450N	32 • 35 • 38 • 40 • 42 • 45 • 48	48 32 • 35 • 38 • 40 • 42 • 45 • 48		90.2	84	40	10.2	56	2-M10	68
SFF-120SS- 🗆 B- 🗆 B-600N	32 • 35 • 38 • 40 • 42 • 45	32 • 35 • 38 • 40 • 42 • 45	118	90.2	84	40	10.2	68	2-M10	68
3FF-12033- L B- L B-000N	48 • 50 • 55	48 • 50 • 55	110	9 0. Z	100	40	10.2	00	2-1/110	00

* Nominal diameter of clamping bolt M1/M2 is given as number of bolts - nominal diameter, and the number is the number for one hub.

SFF(SS) Types Single Element/Clamping


Standard Bore Diameter

Madal									St	tanda	rd bo	ore d	amet	er	d1 •	d2 [n	nm]											
Model	Nominal diameter	8	9	9 .525	10	11	12	14	15	16	17	18	19	20	22	24	25	28	30	32	35	38	40	42	45	48	50	55
SFF-040SS- 🗌 B- 🗌 B-8N	d1	٠	۲	٠																								
SFF-04055- 🗆 B- 🗔 B-8N	d2	٠	۲		٠	٠			٠																			
SFF-040SS- 🗆 B- 🗆 B-12N	d1					٠	٠		٠	•																		
5FF-04055- 🗆 B- 🗆 B- 12N	d2					۲	۲		٠																			
SFF-050SS- 🗆 B- 🗆 B-25N	d1				٠	٠	٠	٠	٠	•	٠	٠	•															
511-03033- <u>-</u> B- <u>-</u> B-23N	d2				٠	٠	٠	٠	٠			٠																
SFF-060SS- 🗆 B- 🗆 B-60N	d1						٠	٠	٠	•	٠	٠	٠															
	d2						٠	٠	۲			٠		٠	٠	۲	٠		۲									
SFF-060SS- 🗆 B- 🗆 B-80N	d1													٠	٠	٠	٠	٠	٠									
	d2															٠	٠		٠									
SFF-070SS- 🗆 B- 🗆 B-90N	d1											٠	•															
	d2											٠					٠				٠							
FF-070SS- 🗆 B- 🗆 B-100N	d1													•	•	•	•	•	•	•	•							
	d2																											
FF-080SS- 🗆 B- 🗆 B-150N	d1														•	•	•	•	•	•	•							
	d2																											
FF-080SS- 🗆 B- 🗆 B-200N	d1														•	•	•	•	•	•	•	•						
	d2														•	•	•			•	•	•						
FF-090SS- 🗆 B- 🗆 B-250N	d1																•	•	-	-	-	-	-	-				
	d2																•	•	•	•	•	•	•	•				
FF-090SS- 🗆 B- 🗆 B-300N	d1																		•	•	•	•	•	•				
	d2																		•	•	•	•	•	•				
FF-100SS- 🗆 B- 🗆 B-450N	d1																			•	•	•	•	•	•	•		
	d2																											
FF-120SS- 🗆 B- 🗆 B-600N	d1																			•	•	•	•	•	•	•	•	
	d2																								•	•		e

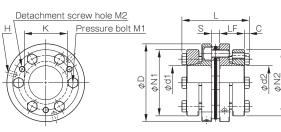
* The bore diameters marked with ullet are supported as standard bore diameter.

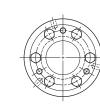
How to Place an Order

SFF-080SS-25BK-30BK-200N

MODELS	
SFC	
SFS	
SFF	
SFM	
SFH	

SFF(SS) Types Single Element/Wedge Coupling


Specifications


			Misalignment		Max. rotation	Torsional	Axial	Moment of	Mass [kg]
	Rated torque [N•m]	Parallel [mm]	Angular [°]	Axial [mm]	speed [min ⁻¹]	stiffness [N•m/rad]	stiffness [N/mm]	inertia [kg•m²]	
SFF-070SS- 🗆 K- 🗆 K-100N	100	0.02	1	± 0.5	18000	240000	484	0.66 × 10 ⁻³	0.92
SFF-080SS- 🗆 K- 🗆 K-150N	150	0.02	1	± 0.5	17000	120000	96	1.21 × 10 ⁻³	1.03
SFF-080SS- 🗆 K- 🗆 K-200N	200	0.02	1	± 0.5	17000	310000	546	1.11 × 10 ⁻³	1.26
SFF-090SS- 🗆 K- 🗆 K-300N	300	0.02	1	± 0.6	15000	520000	321	1.75 × 10 ⁻³	1.48
SFF-100SS- 🗆 K- 🗆 K-450N	450	0.02	1	± 0.65	13000	740000	540	2.56 × 10 ⁻³	1.87
SFF-120SS- 🗆 K- 🗆 K-600N	600	0.02	1	± 0.8	11000	970000	360	5.33 × 10 ⁻³	2.50
SFF-140SS- 🗆 K- 🗆 K-800N	800	0.02	1	± 1.0	10000	1400000	360	10.28 × 10 ⁻³	4.66
SFF-140SS- 🗆 K- 🗆 K-1000N	1000	0.02	1	± 1.0	10000	1400000	360	14.70 × 10 ⁻³	5.01

* Max. rotation speed does not take into account dynamic balance. * Torsional stiffness values given are measured values for the element alone.

* Torsional stiffness values given are measured values for the element alone.
 * The moment of inertia and mass are measured for the maximum bore diameter.

Dimensions

Model	d1 [mm]	d2 [mm]	D [mm]	L [mm]	N1 • N 2 [mm]	LF [mm]	S [mm]	C [mm]	K [mm]	H [mm]	M 1 Qty - Nominal dia.	M1 Tightening torque [N • m]	M 2 Qty - Nominal dia
SFF-070SS- 🗆 K- 🗆 K-100N	18 · 19	18 · 19	68	62.9	53			5	38	3-5.1	6-M6	10	3-M6
	20 · 22 · 24 · 25	20 · 22 · 24 · 25			58	23.5	5.9						
	28 · 30	28 · 30			63								
	32 • 35	32 • 35			68								
SFF-080SS- 🗌 K- 🗌 K-150N	22 · 24 · 25	22 • 24 • 25	70	69.3	58		8.3	5	37	4-5.1	4-M6	10	2-M6
	28 · 30	28 · 30			63	25.5							
	32 · 35	32 · 35	78		68	25.5							
	-	38			73								
SFF-080SS- 🗌 K- 🗌 K-200N	22 · 24 · 25	22 · 24 · 25	78	68.7	58	25.5		5	42	3-5.1	6-M6	10	
	28 · 30	28 · 30			63		7.7						3-M6
	32 • 35	32 • 35			68								
	38	38			73								
SFF-090SS- 🗆 K- 🗆 K-300N	28 · 30	28 · 30	88	69.3	63	25.5	8.3	5	50	3-6.8	6-M6	10	3-M6
	32 • 35	32 • 35			68								
	38 • 40 • 42	38 • 40 • 42			73								
	45	45			78								
	48	48			83								
	32 • 35	32 • 35	98	75.2	68	27.5	10.2	5	56	3-6.8	6-M6	10	3-M6
	38 • 40 • 42	38 • 40 • 42			73								
SFF-100SS- 🗆 K- 🗆 K-450N	45	45			78								
	48 • 50	48 • 50			83								
	35	35	118	75.2	68	27.5	10.2	5	68	3-6.8	6-M6	10	3-M6
	38 • 40 • 42	38 · 40 · 42			73								
	45	45			78								
SFF-120SS- 🗌 K- 🗌 K-600N	48 • 50 • 52	48 • 50 • 52			83								
	55	55			88								
	60 • 62 • 65	60 · 62 · 65			98								
	-	70			108								
	35 • 38	35 • 38	138	94.6	83	36.5	10.6	5.5	78	3-8.6	6-M8	24	3-M8
	40 · 42 · 45	40 · 42 · 45			88								
SFF-140SS- 🗆 K- 🗆 K-800N	-	48 • 50 • 52			98								
	-	55 · 60			108								
	-	62 · 65 · 70			118								
	_	75 • 80			128								
SFF-140SS- 🗌 K- 🗌 K-1000N	48 • 50 • 52	48 • 50 • 52	138	94.6	98	36.5	10.6	5.5	78	3-8.6	6-M8	24	3-M8
	55 · 60	55 · 60			108								
	62 • 65 • 70	62 · 65 · 70			118								
	75	75 • 80			128								

* The nominal diameters of the pressure bolt M1 and detachment screw hole M2 are equal to the quantity minus the nominal diameter of the screw threads. The quantities of H, M1 and M2 are the same as the quantity for a hub on one side.

SFF(SS) Types Single Element/Wedge Coupling

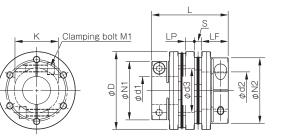
Standard Bore Diameter

								St	tanda	rd bo	re dia	mete	rd1	• d2	[mm]]									
Model	Nominal diameter	18	19	20	22	24	25	28	30	32	35	38	40	42	45	48	50	52	55	60	62	65	70	75	80
SFF-070SS- 🗆 K- 🗆 K-100N	d1	٠	٠	٠	٠	٠	٠	٠	۲	٠	۲														
3FF-07033- 🗆 K- 🗆 K- 100M	d2	۲			٠			۲	۲	۲															
SFF-080SS- 🗆 K- 🗆 K-150N	d1				۲		٠	٠	۲	۲															
3FF-00033- 🗆 K- 🗆 K- 130N	d2				٠		٠	٠	٠	۲		٠													
SFF-080SS- 🗌 K- 🗌 K-200N	d1				۲		٠	۲	۲	۲	٠														
3FF-06033- 🗆 K- 🗆 K-200N	d2				٠		٠	٠	۲	٠		٠													
SFF-090SS- 🗆 K- 🗆 K-300N	d1							۲	۲	۲	٠	۲	۲	۲	۲	٠									
3FF-07033- 🗆 K- 🗆 K-300N	d2							٠	۲	٠		٠		٠	٠	٠									
SFF-100SS- 🗆 K- 🗆 K-450N	d1									۲	٠	٠	٠	٠	۲	٠	٠								
5FF-10055- 🗆 K- 🗆 K-430N	d2									٠						٠									
SFF-120SS- 🗌 K- 🗌 K-600N	d1										٠	٠	٠	٠	٠	•	٠	٠	۲	٠	٠	٠			
SFF-12055- C K- C K-000N	d2															٠									
SFF-140SS- 🗆 K- 🗆 K-800N	d1										٠	٠	٠	٠	٠										
5FF-14055- 🗆 K- 🗆 K-800N	d2										٠	٠		٠	٠	٠		٠	٠			٠	٠		۲
	d1															٠	٠	٠	٠	٠	٠	٠	٠	٠	
SFF-140SS- 🗆 K- 🗆 K-1000N	d2															٠		٠	۲			٠	٠		

SFF-080SS-25KK-30KK-200N

MOD	EL	S										
SFC			 									
SFS			 									
SFF			 									
SFM			 									
SFH												

SFF(DS) Types Double Element/Clamping


Specifications

			Misalignment		Max. rotation	Torsional	Axial	Moment of	
Model	Rated torque [N•m]	Parallel [mm]	Angular [°]	Axial [mm]	speed [min ⁻¹]	stiffness [N•m/rad]	stiffness [N/mm]	inertia [kg•m²]	Mass [kg]
SFF-040DS- 🗌 B- 🗌 B-8N	8	0.10	1(On one side)	± 0.4	14000	7500	87	0.04 × 10 ⁻³	0.22
SFF-040DS- 🗆 B- 🗆 B-12N	12	0.10	1(On one side)	± 0.4	14000	7500	87	0.04 × 10 ⁻³	0.22
SFF-050DS- 🗆 B- 🗆 B-25N	25	0.20	1(On one side)	± 0.6	14000	16000	72.5	0.13 × 10 ⁻³	0.46
SFF-060DS- 🗆 B- 🗆 B-60N	60	0.20	1(On one side)	± 0.6	14000	52000	199.5	0.28 × 10 ⁻³	0.64
SFF-060DS- 🗆 B- 🗆 B-80N	80	0.20	1(On one side)	± 0.6	14000	52000	199.5	0.29 × 10 ⁻³	0.61
SFF-070DS- 🗆 B- 🗆 B-90N	90	0.25	1(On one side)	± 1.0	14000	120000	242	0.53 × 10 ⁻³	0.90
SFF-070DS- 🗆 B- 🗆 B-100N	100	0.25	1(On one side)	± 1.0	14000	120000	242	0.55 × 10 ⁻³	0.85
SFF-080DS- 🗆 B- 🗆 B-150N	150	0.32	1(On one side)	± 1.0	13000	60000	48	1.10 × 10 ⁻³	1.37
SFF-080DS- 🗆 B- 🗆 B-200N	200	0.31	1(On one side)	± 1.0	13000	155000	273	1.50 × 10 ⁻³	1.72
SFF-090DS- 🗆 B- 🗆 B-250N	250	0.32	1(On one side)	± 1.2	12000	260000	160.5	2.03 × 10 ⁻³	2.02
SFF-090DS- 🗆 B- 🗆 B-300N	300	0.32	1(On one side)	± 1.2	12000	260000	160.5	2.10 × 10 ⁻³	1.92
SFF-100DS- 🗆 B- 🗆 B-450N	450	0.38	1(On one side)	± 1.3	10000	370000	270	4.18 × 10 ⁻³	3.12
SFF-120DS- 🗆 B- 🗆 B-600N	600	0.38	1(On one side)	± 1.6	9000	485000	180	8.87 × 10 ⁻³	4.60

* Max. rotation speed does not take into account dynamic balance.

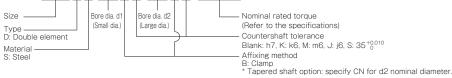
* Torsional stiffness values given are measured values for the element alone. * The moment of inertia and mass are measured for the maximum bore diameter.

Dimensions

Model	d1 [mm]	d2 [mm]	D [mm]	L [mm]	N1•N2 [mm]		LP [mm]	S [mm]	d3 [mm]		M 1 • M2 Qty - Nominal dia.	M1 • M2 Tightening torque [N • m]
SFF-040DS- 🗆 B- 🗆 B-8N	8 • 9 • 9. ₅₂₅	8 • 9 • 9.525 • 10 • 11 • 12 • 14 • 15 • 16	38	48.8	33	17.5	6	3.9	17	17	2-M4	3.4
SFF-040DS- 🗆 B- 🗆 B-12N	10 • 11 • 12 • 14 • 15 • 16	10 • 11 • 12 • 14 • 15 • 16	38	48.8	33	17.5	6	3.9	17	17	2-M4	3.4
SFF-050DS- 🗆 B- 🗆 B-25N	10 • 11 • 12 • 14 • 15 • 16 • 17 • 18 • 19	10 • 11 • 12 • 14 • 15 • 16 • 17 • 18 • 19	48	60.8	42	21.5	7	5.4	20	20	2-M5	7
	12 • 14 • 15 • 16 • 17 • 18 • 19	12 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 22			44						2-M6	14
SFF-060DS- 🗆 B- 🗆 B-60N	-	24 · 25 · 28	58	65.8	48	24	7	5.4	31	32	2-M5	7
	-	30			52						2-1015	'
	20 · 22	20 · 22			44						2-M6	14
SFF-060DS- 🗆 B- 🗆 B-80N	24 • 25 • 28	24 • 25 • 28	58	65.8	48	24	7	5.4	31	32	2-M5	7
	30	30			52						2 1015	,
SFF-070DS- 🗆 B- 🗆 B-90N	18 • 19	18 • 19 • 20 • 22 • 24 • 25	68	69.8	47	25	8	5.9	37	38	2-M6	14
	-	28 • 30 • 32 • 35	00	07.0	56	23	Ŭ	5.5	57	50	2 1110	
SFF-070DS- 🗆 B- 🗆 B-100N	20 • 22 • 24 • 25	20 • 22 • 24 • 25	68	69.8	47	25	8	5.9	37	38	2-M6	14
	28 • 30 • 32 • 35	28 · 30 · 32 · 35		0710	56	2.5	0	515	5.	50		
SFF-080DS- 🗆 B- 🗆 B-150N	22 • 24 • 25	22 • 24 • 25	78	86.6	53	30	10	8.3	40	37	2-M8	34
	28 • 30 • 32 • 35	28 • 30 • 32 • 35	70	00.0	56	50	10	0.5	10	57	2-M6	14
	22 • 24 • 25	22 • 24 • 25			53							
SFF-080DS- 🗌 B- 🗌 B-200N	28 • 30 • 32 • 35	28 • 30 • 32 • 35	78	85.4	70	30	10	7.7	40	42	2-M8	34
	38	38			74							
SFF-090DS- 🗆 B- 🗆 B-250N	25 • 28	25 • 28 • 30 • 32	88	86.6	66	30	10	8.3	50	50	2-M8	34
	-	35 • 38 • 40 • 42	00	0010	74	50		0.5	50	50	2 1110	51
SFF-090DS- 🗆 B- 🗆 B-300N	30 • 32	30 • 32	88	86.6	66	30	10	8.3	50	50	2-M8	34
	35 • 38 • 40 • 42	35 • 38 • 40 • 42	00	00.0	74	50	10	0.5	50	50	2 1110	51
SFF-100DS- 🗆 B- 🗆 B-450N	32 • 35 • 38 • 40 • 42 • 45 • 48	32 • 35 • 38 • 40 • 42 • 45 • 48	98	112.4	84	40	12	10.2	52	56	2-M10	68
SFF-120DS- 🗆 B- 🗆 B-600N	32 • 35 • 38 • 40 • 42 • 45	32 • 35 • 38 • 40 • 42 • 45	110	112.4	84	40	12	10.2	72	68	2-M10	68
	48 • 50 • 55	48 • 50 • 55			100	40	12	10.2	72	08	2-11110	00

* Nominal diameter of clamping bolt M1/M2 is given as number of bolts - nominal diameter, and the number is the number for one hub.

SFF(DS) Types Double Element/Clamping


Standard Bore Diameter

Model									St	tanda	rd bo	ore di	amet	ter	d1 ·	d2 [n	nm]											
model	Nominal diameter	8	9	9 .525	10	11	12	14	15	16	17	18	19	20	22	24	25	28	30	32	35	38	40	42	45	48	50	5
SFF-040DS- 🗆 B- 🗔 B-8N	d1	٠	٠	٠																								
	d2	٠	٠		٠	٠		٠	٠																			
FF-040DS- 🗆 B- 🗆 B-12N	d1				•	٠	٠	٠	٠	•																		
	d2				٠	٠		٠	٠																			
FF-050DS- 🗆 B- 🗆 B-25N	d1				٠	٠	٠	٠	٠	•	٠	٠	٠															
	d2				٠	٠		٠	٠		٠	٠																
SFF-060DS- 🗆 B- 🗆 B-60N	d1						٠	٠	٠	•	٠	٠	٠															
	d2							٠	٠		٠	٠		٠	٠	٠	٠		٠									
SFF-060DS- 🗆 B- 🗆 B-80N	d1													٠	٠	٠	٠	٠	٠									
	d2													۲	٠	٠	٠											
SFF-070DS- 🗆 B- 🗆 B-90N	d1											٠	٠															
	d2													٠	٠	٠	٠			٠	٠							
FF-070DS- 🗆 B- 🗆 B-100N	d1													٠	٠	٠	٠	•	٠	٠	٠							
	d2													٠		٠	٠			٠	٠							
FF-080DS- 🗆 B- 🗆 B-150N	d1														٠	٠	٠	٠	٠	٠	٠							
	d2															٠	٠			٠	٠							
FF-080DS- 🗆 B- 🗆 B-200N	d1														٠	٠	٠	٠	٠	٠	٠	٠						
	d2														٠	٠	٠			٠	٠	٠						
FF-090DS- 🗆 B- 🗆 B-250N	d1																٠	•										
	d2																											
FF-090DS- 🗆 B- 🗆 B-300N	d1																		٠	٠	٠	٠	٠	٠				
	d2																				٠	٠		٠				
FF-100DS- 🗆 B- 🗆 B-450N	d1																			٠	٠	٠	٠	٠	٠	٠		
	d2																			٠	٠	٠	٠	٠	٠			
FF-120DS- 🗆 B- 🗆 B-600N	d1																			٠	٠	٠	٠	٠	٠	٠	٠	•
	d2																					٠		٠				(

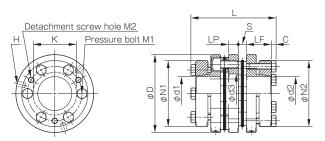
* The bore diameters marked with lacksquare are supported as standard bore diameter.

How to Place an Order

SFF-080DS-25BK-30BK-200N

MODELS	
SFC	
SFS	
SFF	
SFM	
SFH	

SFF(DS) Types Double Element/Wedge Coupling


Specifications

			Misalignment		Max. rotation	Torsional	Axial	Moment of	
Model	Rated torque [N•m]	Parallel [mm]	Angular [°]	Axial [mm]	speed [min ⁻¹]	stiffness [N•m/rad]	stiffness [N/mm]	inertia [kg•m²]	Mass [kg]
SFF-070DS- 🗆 K- 🗆 K-100N	100	0.25	1(On one side)	± 1.0	14000	120000	242	0.80 × 10 ⁻³	1.10
SFF-080DS- 🗆 K- 🗆 K-150N	150	0.32	1(On one side)	± 1.0	13000	60000	48	1.36 × 10 ⁻³	1.56
SFF-080DS- 🗆 K- 🗆 K-200N	200	0.31	1(On one side)	± 1.0	13000	155000	273	1.42 × 10 ⁻³	1.60
SFF-090DS- 🗆 K- 🗆 K-300N	300	0.32	1(On one side)	± 1.2	12000	260000	160.5	2.24 × 10 ⁻³	1.87
SFF-100DS- 🗆 K- 🗆 K-450N	450	0.38	1(On one side)	± 1.3	10000	370000	270	3.51 × 10 ⁻³	2.49
SFF-120DS- 🗆 K- 🗆 K-600N	600	0.38	1(On one side)	± 1.6	9000	485000	180	7.17 × 10 ⁻³	3.29
SFF-140DS- 🗆 K- 🗆 K-800N	800	0.44	1(On one side)	± 2.0	8000	700000	180	14.68 × 10 ⁻³	6.05
SFF-140DS- 🗆 K- 🗆 K-1000N	1000	0.44	1(On one side)	± 2.0	8000	700000	180	19.11 × 10 ⁻³	6.39

* Max. rotation speed does not take into account dynamic balance. * Torsional stiffness values given are measured values for the element alone.

* The moment of inertia and mass are measured for the maximum bore diameter.

Dimensions

Model	d1 [mm]	d2 [mm]	D [mm]	L [mm]	N1 • N 2 [mm]	LF [mm]	LP [mm]	S [mm]	C [mm]	d3 [mm]	K [mm]	H [mm]		M1 Tightening torque [N • m]	
	18 • 19	18 · 19			53										
	20 • 22 • 24 • 25	20 • 22 • 24 • 25	60	76.0	58	225	0	5.0	-	27	20	2 5 1	6 146	10	2 144
SFF-070DS- 🗌 K- 🗌 K-100N	28 • 30	28 • 30	68	76.8	63	23.5	8	5.9	5	37	38	3-5.1	6-M6	10	3-M6
	32 • 35	32 • 35			68										
	22 • 24 • 25	22 · 24 · 25			58										
	28 · 30	28 · 30	70	07.6	63	25.5	10	0.2	-	40	27	4.5.1	4.446	10	2.446
SFF-080DS- 🗌 K- 🗌 K-150N	32 • 35	32 • 35	78	87.6	68	25.5	10	8.3	5	40	37	4-5.1	4-M6	10	2-M6
	-	38			73										
	22 • 24 • 25	22 • 24 • 25			58										
SFF-080DS- 🗌 K- 🗌 K-200N	28 • 30	28 • 30	78	86.4	63	25.5	10	7.7	5	40	42	3-5.1	6-M6	10	3-M6
SFF-060DS K K-200N	32 • 35	32 • 35	70	00.4	68	25.5	10	7.7	5	40	42	5-5.1	0-1110	10	2-1110
	38	38			73										
	28 • 30	28 · 30			63										
	32 • 35	32 • 35			68										
SFF-090DS- 🗆 K- 🗆 K-300N	38 • 40 • 42	38 • 40 • 42	88	87.6	73	25.5	10	8.3	5	50	50	3-6.8	6-M6	10	3-M6
	45	45			78										
	48	48			83										
	32 • 35	32 • 35			68										
SFF-100DS- 🗆 K- 🗆 K-450N	38 • 40 • 42	38 • 40 • 42	98	97.4	73	27.5	12	10.2	5	52	56	3-6.8	6-M6	10	3-M6
	45	45			78				-						
	48 • 50	48 • 50			83										
	35	35			68										
	38 • 40 • 42	38 • 40 • 42			73										
	45	45			78										
SFF-120DS- 🗆 K- 🗆 K-600N	48 • 50 • 52	48 • 50 • 52	118	97.4	83	27.5	12	10.2	5	72	68	3-6.8	6-M6	10	3-M6
	55	55			88										
	60 • 62 • 65	60 · 62 · 65			98										
	-	70			108										
	35 • 38	35 • 38			83										
	40 • 42 • 45	40 · 42 · 45			88										
SFF-140DS- 🗌 K- 🗌 K-800N	_	48 • 50 • 52	138	120.2	98	36.5	15	10.6	5.5	80	78	3-8.6	6-M8	24	3-M8
	_	55 · 60			108										
	_	62 • 65 • 70			118										
	-	75 • 80			128										
	48 • 50 • 52	48 • 50 • 52			98										
SFF-140DS- 🗆 K- 🗆 K-1000N	55 • 60	55 • 60	138	120.2	108	36.5	15	10.6	5.5	80	78	3-8.6	6-M8	24	3-M8
	62 • 65 • 70	62 • 65 • 70			118										
	75	75 • 80			128										

* The nominal diameters of the pressure bolt M1 and detachment screw hole M2 are equal to the quantity minus the nominal diameter of the screw threads. The quantities of H, M1 and M2 are the same as the quantity for a hub on one side

SFF(DS) Types Double Element/Wedge Coupling

Standard Bore Diameter

Madal								S	tanda	ard bo	ore dia	amete	er d'	1∙d2	[mm]										
Model	Nominal diameter	18	19	20	22	24	25	28	30	32	35	38	40	42	45	48	50	52	55	60	62	65	70	75	80
SFF-070DS- 🗆 K- 🗆 K-100N	d1	٠	٠	٠	٠	٠	٠	٠	٠	٠	۲														
3FF-0/003 K K-100N	d2	٠			٠		٠	٠			٠														
SFF-080DS- 🗆 K- 🗆 K-150N	d1				٠		٠	٠		٠	٠														
SFF-060DS K K-150N	d2						٠	٠		۲	٠	٠													
SFF-080DS- 🗆 K- 🗆 K-200N	d1				٠	٠	٠	٠	۲	۲	٠	٠													
SFF-060DS K K-200N	d2						٠	٠		۲	٠	٠													
SFF-090DS- 🗆 K- 🗆 K-300N	d1							٠	۲	٠	٠	٠	٠	۲	۲	٠									
SFF-070DS K K-300N	d2							٠		۲	٠	٠	٠	٠											
SFF-100DS- 🗆 K- 🗆 K-450N	d1									٠	٠	٠	٠	٠	۲	٠	٠								
3FF-10003- 🗆 K- 🗆 K-430N	d2									۲	٠	٠	٠	٠											
SFF-120DS- 🗆 K- 🗆 K-600N	d1										٠	٠	٠	۲	٠	٠	٠	٠	۲	٠	٠	٠			
SFF-12005 K K-000N	d2											٠		٠				٠	٠				٠		
SFF-140DS- 🗆 K- 🗆 K-800N	d1										٠	٠	٠	٠	۲										
5FF-14005- 1 K- 1 K-800N	d2										٠	٠	٠	٠	٠	٠		٠	٠	٠	٠	٠	٠	٠	۲
SFF-140DS- 🗆 K- 🗆 K-1000N	d1															٠	٠	۲	٠	٠	٠	٠	٠	٠	
SFF-14005- C K- C K-1000N	d2																						٠		

SFF-080DS-25KK-30KK-200N

Tapered shaft supported Options

One of the hubs is a taper flange, supporting servo motor tapered shafts.

Specification	s/Din	nen	sior	าร	Si	ngle	e El	em	ent	/Cla	mp	oing	J						
Model	Rated torque [N•m]		oment inertia kg•m	1	Mass [kg]					κ φDA		lampi	ng bo	It M	<u> </u>				
SFF-040SS- 🗆 B-11CN-8N	8	0.	03 × 10) — 3	0.20				WA.		+/	Cent	ter nu	<u>it</u>	<mark>╼╒╻</mark> ┝	LF2	-		+0.020
SFF-040SS- 🗆 B-11CN-12N	12	0.	03 × 10) – 3	0.18						H	/	-	<u>ا</u>			卢	W	+0.030
SFF-050SS- 🗌 B-14CN-25N	25	0.	09 × 10) — 3	0.36				6			\		1	\odot	km.		-	
SFF-050SS- 🗆 B-16CN-25N	25	0.	10 × 10) – 3	0.41			4	<u> </u>		XIT	\perp		φN1 - 41				S 20	
SFF-060SS- 🗆 B-16CN-60N	60	0.	18 × 10) — 3	0.54			(AL	<u> </u>	14	/	Ð	00				е F	
SFF-060SS- B-16CN-80N	80	0.	19 × 10) – 3	0.52				(H		Ŧ	/		<u> </u>	� ₽				4 10
* The moment of inertia and mass * For other Specifications, see Spec						ter.				4			-	<u>v</u>	L/#4		aperec	<u>i, 1/10</u>	¢d2
Model	d1 [mm]	d2 [mm]	W [mm]	T [mm]	D [mm]	L [mm]	N1 [mm]	N 2 [mm]	LF1 [mm]	LF2 [mm]	S [mm]	K [mm]	H [mm]	M Qty - Nominal dia.	MTightening torque [N • m]	DA [mm]	W A [mm]	J Nominal × pitch	J Tightening torque [N • m]
SFF-040SS- 🗆 B-11CN-8N	8~9. ₅₂₅	11	4	12.2	38	46.4	33	22	17.5	25	3.9	17	5.1	2-M4	3.4	12	6	M6 imes 1.0	10
SFF-040SS- 🗆 B-11CN-12N	$10 \sim 16$	11	4	12.2	38	46.4	33	22	17.5	25	3.9	17	5.1	2-M4	3.4	12	6	M6 imes 1.0	10

SFF-050SS- 🗆 B-14CN-25N	$10 \sim 19$	14	4	15.1	48	56.9	42	27.5	21.5	30	5.4	20	5.1	2-M5	7	15	8	M8 imes 1.0	20	
SFF-050SS- 🗆 B-16CN-25N	$10 \sim 19$	16	5	17.3	48	67.9	42	29.5	21.5	41	5.4	20	6.8	2-M5	7	16	10	M 10 × 1.25	30	
SFF-060SS- 🗆 B-16CN-60N	12~19	16	5	17.3	58	70.4	44	29.5	24	41	5.4	32	6.8	2-M6	14	16	10	$\rm M~10\times1.25$	30	
	$20 \sim 22$						44							2-M6	14					
SFF-060SS- 🗆 B-16CN-80N	$24 \sim 28$	16	5	17.3	58	70.4	48	29.5	24	41	5.4	32	6.8	2-M5	7	16	10	M 10 × 1.25	30	
	30						52							2 1015						

WA

Center nut

N N E

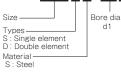
Specifications/Dimensions Double Element/Clamping

Model	Rated torque [N•m]	Moment of inertia [kg • m²]	Mass [kg]
SFF-040DS- 🗌 B-11CN-8N	8	$0.04 imes 10^{-3}$	0.25
SFF-040DS- B-11CN-12N	12	0.04 × 10 ⁻³	0.23
SFF-050DS- B-14CN-25N	25	0.12×10^{-3}	0.45
SFF-050DS- B-16CN-25N	25	0.13 × 10 ⁻³	0.49
SFF-060DS- B-16CN-60N	60	0.24 × 10 ⁻³	0.67
SFF-060DS- B-16CN-80N	80	0.26 × 10 ⁻³	0.64

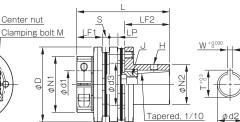
* The moment of inertia and mass are measured for the maximum bore diameter. * For other Specifications, see Specifications for Double Element/Clamping.

Model	d1 [mm]	d2 [mm]	W [mm]	T [mm]	D [mm]	L [mm]	N1 [mm]	N 2 [mm]	LF1 [mm]	LF2 [mm]	LP [mm]	S [mm]	d3 [mm]	K [mm]	H [mm]		M Tightening torque [N • m]	DA [mm]		J Nominal × pitch	
SFF-040DS- 🗆 B-11CN-8N	8~9. ₅₂₅	11	4	12.2	38	56.3	33	22	17.5	25	6	3.9	17	17	5.1	2-M4	3.4	12	6	M6 imes 1.0	10
SFF-040DS- 🗆 B-11CN-12N	$10 \sim 16$	11	4	12.2	38	56.3	33	22	17.5	25	6	3.9	17	17	5.1	2-M4	3.4	12	6	M6 × 1.0	10
SFF-050DS- 🗆 B-14CN-25N	$10 \sim 19$	14	4	15.1	48	69.3	42	27.5	21.5	30	7	5.4	20	20	5.1	2-M5	7	15	8	M8 × 1.0	20
SFF-050DS- 🗆 B-16CN-25N	10~19	16	5	17.3	48	80.3	42	29.5	21.5	41	7	5.4	20	20	6.8	2-M5	7	16	10	M 10 × 1.25	30
SFF-060DS- 🗆 B-16CN-60N	$12 \sim 19$	16	5	17.3	58	82.8	44	29.5	24	41	7	5.4	31	32	6.8	2-M6	14	16	10	M 10 × 1.25	30
	$20 \sim 22$						44									2-M6	14				
SFF-060DS- B-16CN-80N	$24 \sim 28$	16	5	17.3	58	82.8	48	29.5	24	41	7	5.4	31	32	6.8	2-M5	7	16	10	M 10 × 1.25	30
	30						52									2 1015	,				

Standard Bore Diameter


Model							S	tandard	Bore Dia	ameter	d1 [mn	n]						
Model	8	9	9.525	10	11	12	14	15	16	17	18	19	20	22	24	25	28	30
SFF-040 🗆 - 🗆 B-11CN-8N	٠	٠	٠															
SFF-040 🗌 - 🗌 B-11CN-12N				٠	•	•	•	•	•									
SFF-050 🗌 - 🗌 B-14CN-25N				٠	•	٠	•	•	•	٠	•	٠						
SFF-050 🗆 - 🗆 B-16CN-25N				•	•	•	•	•	•	•	•							
SFF-060 🗆 - 🗆 B-16CN-60N						٠	٠	٠	٠	٠	٠	٠						
SFF-060 🗌 - 🗌 B-16CN-80N													•	•	•	•		•

* The bore diameters marked with
are supported as standard bore diameter.

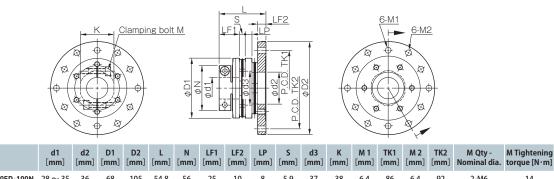

How to Place an

Order

SFF-050DS-10BK-14CN-25N

Nominal rated torque (Refer to the specifications) [d2]CN CN : Taper flange *Select d2 for CN. Countershaft tolerance Blank : h7 , K : k6 , M : m6 , J : j6 , S : $35^{+0.010}_{-0.010}$ Affixing method B : Clamp

Options Flange-Mounted


One of the hubs is flange-shaped, allowing mounting on a DD motor, speed reducer, etc.

Specifications									
	D () (Misalignment		Max. rotation	Torsional	Axial	Moment of	
Model	Rated torque [N • m]	Parallel [mm]	Angular [°]	Axial [mm]	speed [min ⁻¹]	stiffness [N•m/rad]	stiffness [N/mm]	inertia [kg • m²]	Mass [kg]
SFF-070DS- 🗌 B-105D-100N	100	0.25	1 (On one side)	± 1.0	1000	120000	242	1.20 × 10 ⁻³	1.08
SFF-080DS- 🗆 B-166D-200N	200	0.31	1 (On one side)	± 1.0	1000	155000	273	8.35 × 10 ⁻³	3.11
SFF-090DS- 🗌 B-166D-300N	300	0.32	1 (On one side)	± 1.2	1000	260000	160.5	8.68 × 10 ⁻³	3.18
SFF-100DS- 🗆 B-166D-450N	450	0.38	1 (On one side)	± 1.3	1000	370000	270	10.01 × 10 ⁻³	3.91
SFF-120DS- 🗌 B-166D-600N	600	0.38	1 (On one side)	± 1.6	1000	485000	180	12.65×10^{-3}	4.57

* Max. rotation speed does not take into account dynamic balance.

* Torsional stiffness values given are measured values for the element alone. * The moment of inertia and mass are measured for when d1 is the maximum bore diameter.

Dimensions

Model	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]	5 [mm]	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]	Nominal dia.	torque [N·m]
SFF-070DS- 🗆 B-105D-100N	$28 \sim 35$	36	68	105	54.8	56	25	10	8	5.9	37	38	6.4	86	6.4	92	2-M6	14
SFF-080DS- 🗆 B-166D-200N	$28 \sim 38$	39	78	166	68.9	70(74)	30	13.5	10	7.7	40	42	6.4	150	8.6	150	2-M8	34
SFF-090DS- 🗌 B-166D-300N	$35\sim42$	49	88	166	70.1	74	30	13.5	10	8.3	50	50	6.4	150	8.6	150	2-M8	34
SFF-100DS- 🗆 B-166D-450N	$32 \sim 48$	51	98	166	85.9	84	40	13.5	12	10.2	52	56	6.4	150	8.6	150	2-M10	68
SFF-120DS- 🗆 B-166D-600N	$48 \sim 55$	67	118	166	85.9	100	40	13.5	12	10.2	72	68	6.4	150	8.6	150	2-M10	68

* The figure in parentheses () for the SFF-080DS is the value when d1 is ø38 mm.

* Special arrangements may be possible for mounting holes at the flange end regarding bore diameter, number, and pitch. Check if arrangements are possible.

Standard Bore Diameter

Madal					Standard	Bore Diameter	r d1 [mm]				
Model	28	30	32	35	38	40	42	45	48	50	55
SFF-070DS- 🗆 B-105D-100N	٠	•	•	•							
FF-080DS- 🗆 B-166D-200N	٠	•	•	•	•						
FF-090DS- 🗌 B-166D-300N				•	•	•	•				
SFF-100DS- 🗆 B-166D-450N			•	•	•	•	•	•	•		
SFF-120DS- 🗌 B-166D-600N									٠	٠	•
How to Place a	n S	FF-08	0DS-3	8BK-1	66D-2	200N					
Order	Mat		nt			(R [D D: * \$ Cc BI Af	ominal rated to lefer to the spo 2] D Flange-mount Select [D2] D a countershaft to ank : h7, K : I ffixing method : Clamp	ecifications) ted after d1. lerance k6, M:m6,	J : j6 , S : 35	+0.010	

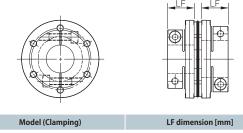
Items Checked for Design Purposes

Special Items to Take Note of

You should note the following to prevent any problems.

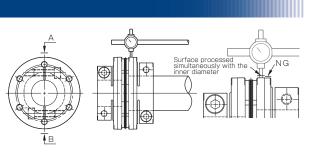
(1) Always be careful of parallel, angular, and axial misalignment.

(2) Always tighten bolts with the specified torque.


Precautions for Handling

Couplings are assembled at high accuracy using a special mounting jig to ensure accurate concentricity of left and right internal diameters. Take extra precautions when handling couplings, should strong shocks be given on couplings, it may affect mounting accuracy and cause the parts to break during use.

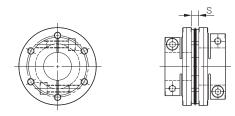
- (1) Couplings are designed for use within an operating temperature range of -30° C to 120°C. Although the couplings are designed to be waterproof and oilproof, do not subject them to excessive amounts of water and oil as it may cause part deterioration.
- (2) Handle the element with care as it is made of a thin stainless steel metal disc, also making sure to be careful so as not to injure yourself.
- (3) Do not tighten up clamping bolts or pressure bolts until after inserting the mounting shaft.


Mounting (Clamping)

- (1) Check that coupling clamping bolts have been loosened and remove any rust, dust, oil residue, etc. from the inner diameter surfaces of the shaft and couplings. In particular, never allow oil or grease containing antifriction or other agent (molybdenum-, silicon-, or fluorine-based), which would dramatically affect the friction coefficient, to contact the surface.
- (2) Be careful when inserting the couplings into the shaft so as not to apply excessive force of compression or tensile force to the element.
- (3) Ensure that the length of the coupling inserted onto the motor shaft touches the shaft for the entire length of the clamping hub of the coupling (LF dimension), as shown in the diagram below, and position it so that it does not interfere with the elements, spacers or the other shaft. Then temporarily tighten the two clamping bolts, tightening them alternately until the coupling cannot be manually rotated.

model (clamping)	Er annension [mm]
SFF-040	17.5
SFF-050	21.5
SFF-060	24
SFF-070	25
SFF-080	30
SFF-090	30
SFF-100	40
SFF-120	40

(4) Hold a dial gauge against the outer diameter of the clamping hub on the motor shaft side (the surface processed simultaneously with the inner diameter), and then tighten the two clamping bolts while turning the motor shaft by hand and adjusting the difference in the runout values at A and B in the figure below is 0.02 mm or less (and as close to 0 as possible).

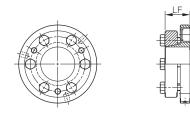


(5) Alternately fasten the two clamping bolts as you adjust them, and finish by tightening both bolts to the appropriate tightening torque of the following table, using a calibrated torque wrench. Since it is fastened by two clamping bolts tightening one bolt.

Since it is fastened by two clamping bolts, tightening one bolt before the other will place more than the prescribed axial force on the bolt tightened first when the other bolt is tightened. Be sure to tighten them alternately, a little at a time.

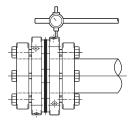
Clamping bolt nominal diameter	Tightening torque [N·m]
M4	3.4
M5	7
M6	14
M8	34
M10	68

- (6) Mount the motor, to which the coupling has already been mounted, on the body of the machinery. At that time, adjust the motor mounting position (centering location) while inserting the coupling onto the driven shaft (a feed screw or the like), being alert to undue forces on the element such as compression or pulling.
- (7) Make the length of the driven shaft (feed screw or the like) inserted into the coupling connect to the shaft for the length of the LF dimension (described above), alternately tighten the two clamping bolts, and provisionally tighten enough that the coupling cannot be manually rotated.
- (8) In addition, keep the dimension between clamping hub faces (the S dimension in the diagram) to within the allowable misalignment of the axial displacement with respect to a reference value. Note that the tolerance values were calculated based on the assumption that both the level of parallel misalignment and angular deflection are zero. Adjust to keep this value as low as possible.



Model (Clamping)	S dimension [mm]
SFF-040	3.9
SFF-050	5.4
SFF-060	5.4
SFF-070	5.9
SFF-080 (-150N)	8.3
SFF-080 (-200N)	7.7
SFF-090	8.3
SFF-100	10.2
SFF-120	10.2

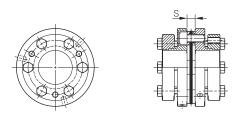
- (9) Adjust runout using the same procedure as for the motor shaft side, and then finish by tightening the clamping bolts to the appropriate tightening torque.
- (10) To protect against initial loosening of the clamping bolt, we recommend operating for a set period of time and then retightening to the appropriate tightening torque.


Mounting (Wedge Coupling)

- (1) Check that coupling pressure bolts have been loosened and remove any rust, dust, oil residue, etc. from the inner diameter surfaces of the shaft and couplings. In particular, never allow oil or grease containing antifriction or other agent (molybdenum-, silicon-, or fluorine-based), which would dramatically affect the friction coefficient, to contact the surface.
- (2) Be careful when inserting the couplings into the shaft so as not to apply excessive force of compression or tensile force to the element.
- (3) Insert each coupling far enough onto the motor shaft that it touches the shaft along the entire length of the coupling flange (LF dimension), as shown in the diagram below. Position it so that it does not interfere with the elements, spacers or the other shaft and then hold it in place.

Model (Wedge coupling)	LF dimension [mm]
SFF-070	23.5
SFF-080	25.5
SFF-090	25.5
SFF-100	27.5
SFF-120	27.5
SFF-140	36.5

- (4) Using the drive pin hole, lightly tighten the pressure bolt on the diagonal.
- (5) Touch the dial gauge to the flange end face or outer diameter on the motor shaft side. Then, while gently rotating the motor shaft manually, adjust the flange periphery and end face by hammering until the runout is as close to zero as possible.


(6) Sequentially fasten the pressure bolts while doing hammering adjustments, and then use a calibrated torque wrench to tighten all the pressure bolts to the appropriate tightening torques below. See the following figure for the tightening procedure for the pressure bolts. Try to tighten them evenly.

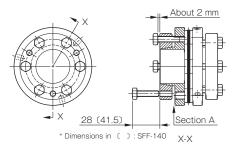
6	
Q	
	6
9	0

Pressure bolt nominal diameter	Tightening torque [N·m]
M6	10
M8	24

- (7) Tighten the motor shaft's pressure bolts at the nominal torque and check that the runout value is low.
- (8) Mount the motor, to which the coupling has already been mounted, on the body of the machinery. At that time, adjust the motor mounting position (centering location) while inserting the coupling onto the driven shaft (a feed screw or the like), taking care to not deform the disc. Also insert each coupling far enough onto the paired shaft that it touches the shaft along the entire length of the coupling flange (LF dimension) and then hold it in that position.

(9) Keep the width of the dimension between flange faces (S dimension in the diagram) within the allowable error range for axial misalignment with respect to the reference value. Note that the tolerance values were calculated based on the assumption that both the level of parallel misalignment and angular deflection are zero. Adjust to keep this value as low as possible.

Model	S dimension [mm]
SFF-070	5.9
SFF-080 (-150N)	8.3
SFF-080 (-200N)	7.7
SFF-090	8.3
SFF-100	10.2
SFF-120	10.2
SFF-140	10.6


- (10) Sequentially tighten the pressure bolts on the driven shaft (a feed screw or the like) side using the same procedure as for the motor shaft side pressure bolts, and then tighten to the appropriate tightening torque.
- (11) To protect against initial loosening of the pressure bolt, we recommend operating for a set period of time and then retightening to the appropriate tightening torque.

MODE	LS									
SFC										
SFS		 								
SFF										
SFM		 								
SFH		 	•	 						
									-	

Items Checked for Design Purposes

Removal

- (1) Check to confirm that there is no torque or axial load being applied to the coupling. There may be cases where a torque is applied to the coupling, particularly when the safety brake is being used. Make sure to verify that this is not occurring before removing parts.
- (2) Loosen all the clamping bolts or pressure bolts (loosen pressure bolts until the gap between bearing seat and sleeve is about 2mm).
- (3) For clamping type, release the fastening to the shaft by sufficiently loosening all clamping bolts. Note that grease has been applied to the clamping bolts, so do not remove them all the way.
- (4) In the case of a wedge coupling system that tightens a pressure bolt from the axial direction, the sleeve will be self-locking, so the coupling between flange and shaft cannot be released simply by loosening the pressure bolt. (Note that in some cases, a coupling can be released by loosening a pressure bolt.) For that reason, when designing devices, a space must be installed for inserting a detachment screw.

- (5) Pull out three of the pressure bolts (two 080, 150 N) loosened in step (2), insert them into the detachment screw holes on the sleeve, and tighten them in order, a little at a time. The coupling will be released.
- (6) If there is no space in the axial direction, insert the tip of a flathead screwdriver or the like into part A and lightly tap perpendicular to the shaft or use it as a lever to pry off the coupling. Use appropriate caution to not damage the coupling body or the pressure bolts.

Suitable Torque Screwdriver/Torque Wrench Clamping bolt

Nominal bolt diameter	Tightening torque [N • m]	Torque screwdriver/ wrench	Hexagon bit/ head	Coupling size
M4	3.4	CN500LTDK	SB 3mm	040
M5	7	N10LTDK	SB 4mm	050 • 060
M6	14	N25LCK	25HCK 5mm	060 • 070 • 080
M8	34	N50LCK	50HCK 6mm	080 • 090
M10	68	$\texttt{N100SPCK} \times \texttt{68N} \boldsymbol{\cdot} \texttt{m}$	100HCK 8mm	100 · 120

* Torque screwdriver (wrench)/bit (head) models are those of Nakamura Mfg. Co., Ltd.

Pressure bolt

Nominal bolt diameter	Tightening torque [N • m]	Torque wrench	Spanner head	Coupling size
M6	10	$\texttt{N12SPCK} \times \texttt{10N} \boldsymbol{\cdot} \texttt{m}$	25SCK 10mm	$070 \sim 120$
M8	24	$\text{N50SPCK} \times 24\text{N} \boldsymbol{\cdot} \text{m}$	50SCK 13mm	140

* Torque wrench/spanner head models are those of Nakamura Mfg. Co., Ltd.

Differences in Torsional Stiffness due to Element Shape

Elements used by SFF models may be either square or hexagonal. Since torque is transmitted by coupling the hubs to each other via the element, torsional stiffness is higher in couplings that use hexagonal elements transmitting torque with six bolts, at the expense of some flexibility. Choose your element shape accordingly.

SFF-040SquareSFF-050SquareSFF-050HexagonalSFF-060HexagonalSFF-080 (-150N)SquareSFF-080 (-200N)HexagonalSFF-090HexagonalSFF-100HexagonalSFF-120HexagonalSFF-140Hexagonal	Model (nominal rated torque)	Element shape
SFF-060HexagonalSFF-070HexagonalSFF-080 (-150N)SquareSFF-080 (-200N)HexagonalSFF-090HexagonalSFF-100HexagonalSFF-120Hexagonal	SFF-040	Square
SFF-070HexagonalSFF-080 (-150N)SquareSFF-080 (-200N)HexagonalSFF-090HexagonalSFF-100HexagonalSFF-120Hexagonal	SFF-050	Square
SFF-080 (-150N)SquareSFF-080 (-200N)HexagonalSFF-090HexagonalSFF-100HexagonalSFF-120Hexagonal	SFF-060	Hexagonal
SFF-080 (-200N) Hexagonal SFF-090 Hexagonal SFF-100 Hexagonal SFF-120 Hexagonal	SFF-070	Hexagonal
SFF-00 Hexagonal SFF-100 Hexagonal SFF-120 Hexagonal	SFF-080 (-150N)	Square
SFF-100 Hexagonal SFF-120 Hexagonal	SFF-080 (-200N)	Hexagonal
SFF-120 Hexagonal	SFF-090	Hexagonal
	SFF-100	Hexagonal
SFF-140 Hexagonal	SFF-120	Hexagonal
3	SFF-140	Hexagonal

Center Nut for Tapered Shafts

The center nut designated for clamping-type sizes 040/050/060 is shipped pre-installed depending on the opposite coupling-end bore diameter. Check the table below.

Clamping hub type model	Center nut installation
SFF-040 🗆 - 🗔 B-11CN-8N	All pre-installed
SFF-040 🗌 - 🗌 B-11CN-12N	Installed where d1 <d12< th=""></d12<>
SFF-050 🗌 - 🗌 B-14CN-25N	Installed where d1 <d15< th=""></d15<>
SFF-050 🗌 - 🗌 B-16CN-25N	Installed where d1 <d16< th=""></d16<>
SFF-060 🗆 - 🗆 B-16CN-60N	Installed where d1 <d16< th=""></d16<>
SFF-060 🗆 - 🗆 B-16CN-80N	All bundled

Flange Mounted

You must prepare bolts separately for mounting of flange-mounted models of clamping-type sizes 070 to 120.

Before mounting at the flange end, check the device and material being mounted to, strength classification of bolts, etc. for appropriate mounting.

Clamping and Wedge Coupling in Combination

For the range of common sizes between clamping and wedge coupling (070 - 120), a common element is used per each size allowing you to use them in combination.

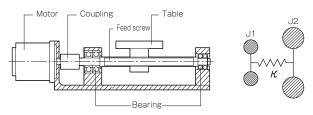
When specifying bore diameters in this instance, specify d1: clamping, d2: wedge coupling in that order, regardless of larger and smaller bore diameters.

Example) SFF-080SS-30B-25K-200N

Bore dia. d1		Affixing method
Affixing method	J	K: Wedge
B: Clamp		Bore dia. d2

Rated torques after combination are given for the clamping side. See the table below.

d1 clamping (desi	gnation B)	d2 wedge coupling (d	esignation K)	Rated torque after
Model	Bore diameter range [mm]	Model	Bore diameter range [mm]	combination [N·m]
SFF-070 (-90N)	18 · 19	SFF-070 (-100N)	$18\sim35$	90
SFF-070 (-100N)	$20 \sim 35$	SFF-070 (-100N)	$18 \sim 35$	100
SFF-080 (-150N)	$22 \sim 35$	SFF-080 (-150N)	$22 \sim 38$	150
SFF-080 (-200N)	22~38	SFF-080 (-200N)	$22 \sim 38$	200
SFF-090 (-250N)	25 · 28	SFF-090 (-300N)	$28 \sim 48$	250
SFF-090 (-300N)	30~42	SFF-090 (-300N)	$28 \sim 48$	300
SFF-100 (-450N)	32~48	SFF-100 (-450N)	$32 \sim 50$	450
SFF-120 (-600N)	32~55	SFF-120 (-600N)	$35 \sim 70$	600


Points to Consider Regarding the Feed Screw System

Gain adjustment on the servo motor may cause the servo motor to oscillate. Oscillation in the servo motor during operation can cause problems particularly with the overall natural frequency and electrical control systems of the feed screw system.

In order for these issues to be resolved, the torsional stiffness for the coupling and feed screw section and the moment of inertia and other characteristics for the system overall will need to be adjusted and the torsional natural frequency for the mechanical system raised or the tuning function (filter function) for the electrical control system in the servo motor adjusted during the design stage.

How to Find the Natural Frequency of a Feed Screw System

Select a coupling based on the maximum torque of the servo motor. Next, find the overall natural frequency, Nf, from the torsional stiffness of the coupling and feed screw, κ , the moment of inertia of driving side, J1, and the moment of inertia of driven side, J2, for the feed screw system shown below.

Natural frequency of overall feed screw system Nf

 $Nf = \frac{1}{2\pi} \sqrt{\kappa \left(\frac{1}{J1} + \frac{1}{J2}\right)}$

- Nf: Overall natural frequency of a feed screw system [Hz]
- κ : Torsional stiffness of the coupling and feed screw [N·m/rad]
- J1: Moment of inertia of driving side $[kg{\cdot}m^2]$
- J2: Moment of inertia of driven side [kg·m²]

Torsional spring constant of coupling and feed screw κ

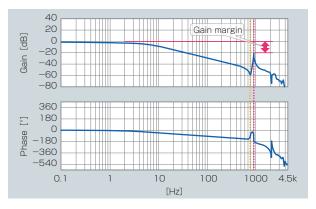
Jm:

$$\frac{1}{\mathcal{K}} = \frac{1}{\mathcal{K}c} + \frac{1}{\mathcal{K}b}$$

 κ c: Torsional spring constant of coupling [kg·m²] κ b: Torsional spring constant of feed screw [kg·m²]

Driving moment of inertia J1

$$J1 = Jm + \frac{Jc}{2}$$


Driven moment of inertia J2

$$J2=Jb+Jt+\frac{Jc}{2}$$

Moment of inertia of table Jt

M: Mass of table [kg] P: Lead of feed screw [m] Since it is easier for oscillation to occur when the gain margin with natural frequency is 10 dB or lower, it is necessary for the natural frequency to be set high with a therefore higher gain margin at the design stage, or to adjust the natural frequency using the servomotor's electric tuning function (filter function) so as to avoid oscillation.

Selection Procedures

(1) Find the torque, Ta, applied to the coupling using the output capacity, P, of the driver and the usage rotation speed, n.

Ta
$$[N \cdot m] = 9550 \times \frac{P [kW]}{n [min^{-1}]}$$

(2) Determine the factor K from the load properties, and find the corrected torque, Td, applied to the coupling.

Td $[N \cdot m] = Ta [N \cdot m] \times K(Refer to the table below for values)$

For servo motor drive, multiply the maximum torque, Ts, by the usage factor K = 1.2 to 1.5.

Td $[N \cdot m] = Ts [N \cdot m] \times (1.2 \sim 1.5)$

(3) Set the size so that the rated coupling torque, Tn, is higher than the corrected torque, Td.

$Tn [N \cdot m] \ge Td [N \cdot m]$

- (4) Check that the mount shaft is no larger than the maximum bore diameter of the coupling.
- * Contact Miki Pulley for assistance with any device experiencing extreme periodic vibrations.

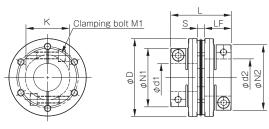
MODELS	
SFC	
SFS	
SFF	
SFM	
SFH	

Jc: Moment of inertia of coupling [kg·m²]

Jb: Moment of inertia of feedscrew [kg·m²]

Jc: Moment of inertia of coupling [kg·m²]

Jt: Moment of inertia of table [kg·m²]


SFM Models Clamping

Specifications

			Misalignment		Max. rotation	Torsional	Axial	Moment of	
Model	Rated torque [N•m]	Parallel [mm]	Angular [°]	Axial [mm]	speed [min ⁻¹]	stiffness [N•m/rad]	stiffness [N/mm]	inertia [kg•m²]	Mass [kg]
SFM-060SS- 🗆 B- 🗆 B-60N	60	0.02	1	± 0.3	24000	104000	399	0.22 × 10 ⁻³	0.52
SFM-060SS- 🗆 B- 🗆 B-80N	80	0.02	1	± 0.3	24000	104000	399	0.23 × 10 ⁻³	0.49
SFM-070SS- 🗆 B- 🗆 B-90N	90	0.02	1	± 0.5	24000	240000	484	0.40 × 10 ⁻³	0.72
SFM-070SS- 🗆 B- 🗆 B-100N	100	0.02	1	± 0.5	24000	240000	484	0.42 × 10 ⁻³	0.67
SFM-080SS- 🗆 B- 🗆 B-150N	150	0.02	1	± 0.5	24000	120000	96	0.79 × 10 ⁻³	1.04
SFM-080SS- 🗆 B- 🗆 B-200N	200	0.02	1	± 0.5	24000	310000	546	1.25 × 10 ⁻³	1.40
SFM-090SS- 🗆 B- 🗆 B-250N	250	0.02	1	± 0.6	24000	520000	321	1.54 × 10 ⁻³	1.62
SFM-090SS- 🗆 B- 🗆 B-300N	300	0.02	1	± 0.6	24000	520000	321	1.58 × 10 ⁻³	1.53
SFM-100SS- 🗆 B- 🗆 B-450N	450	0.02	1	± 0.65	20000	740000	540	3.27 × 10 ⁻³	2.53
SFM-120SS- 🗆 B- 🗆 B-600N	600	0.02	1	± 0.8	20000	970000	360	6.90 × 10 ⁻³	3.78

* Torsional stiffness values given are calculated for the element alone. * The moment of inertia and mass are measured for the maximum bore diameter.

Dimensions

Model	d1 [mm]	d2 [mm]	D [mm]	L [mm]	N1 • N 2 [mm]	LF [mm]	S [mm]			M1 • M2 Tightening torque [N • m]
	12 • 14 • 15 • 16 • 17 • 18 • 19	12 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 22			44				2-M6	14
SFM-060SS- 🗆 B- 🗆 B-60N	-	24 • 25 • 28	58	53.4	48	24	5.4	32	2-M5	7
	-	30			52				2-1015	7
	20 · 22	20 · 22			44				2-M6	14
SFM-060SS- 🗆 B- 🗆 B-80N	24 · 25 · 28	24 • 25 • 28	58	53.4	48	24	5.4	32	2-M5	7
	30	30			52				2-1015	1
SFM-070SS- 🗆 B- 🗆 B-90N	18 • 19	18 • 19 • 20 • 22 • 24 • 25	68	55.9	47	25	5.9	38	2-M6	14
51 11-07055 87014	-	28 · 30 · 32 · 35	00	55.7	56	25	5.7	50	2 10	17
SFM-070SS- 🗆 B- 🗆 B-100N	20 • 22 • 24 • 25	20 • 22 • 24 • 25	68	55.9	47	25	5.9	38	2-M6	14
	28 • 30 • 32 • 35	28 • 30 • 32 • 35	00	55.5	56	23	5.5	50	2 1110	
SFM-080SS- 🗆 B- 🗆 B-150N	22 • 24 • 25	22 • 24 • 25	78	68.3	53	30	8.3	37	2-M8	34
	28 • 30 • 32 • 35	28 • 30 • 32 • 35	70	00.5	56	50	0.5	51	2-M6	14
	B-□B-150N 28 · 30 · 32 · 35 22 · 24 · 25				53					
SFM-080SS- 🗆 B- 🗆 B-200N	28 • 30 • 32 • 35	28 • 30 • 32 • 35	78	67.7	70	30	7.7	42	2-M8	34
	38	38			74					
SFM-090SS- 🗆 B- 🗆 B-250N	25 • 28	25 • 28 • 30 • 32	88	68.3	66	30	8.3	50	2-M8	34
	-	35 • 38 • 40 • 42	00	00.5	74	50	0.5	50	2 1110	51
SFM-090SS- 🗆 B- 🗆 B-300N	30 • 32	30 • 32	88	68.3	66	30	8.3	50	2-M8	34
	35 • 38 • 40 • 42	35 • 38 • 40 • 42	00	00.5	74	50	0.5	50	2 1110	51
SFM-100SS- 🗆 B- 🗆 B-450N	32 • 35 • 38 • 40 • 42 • 45 • 48	32 • 35 • 38 • 40 • 42 • 45 • 48	98	90.2	84	40	10.2	56	2-M10	68
SFM-120SS- 🗆 B- 🗆 B-600N	32 • 35 • 38 • 40 • 42 • 45	32 • 35 • 38 • 40 • 42 • 45	118	90.2	84	40	10.2	68	2-M10	68
3FM-12035- 🗆 B- 🗆 B-600N	48 • 50 • 55	48 • 50 • 55	110	90.2	100	40	10.2	00	2-11110	00

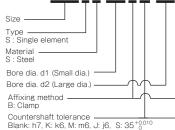
* Nominal diameter of clamping bolt M1/M2 is given as number of bolts - nominal diameter, and the number is the number for one hub.

SFM Models Clamping

Standard Bore Diameter

Madal								Stan	dard k	ore d	iamet	er d'	1•d2 [mm]									
Model	Nominal diameter	12	14	15	16	17	18	19	20	22	24	25	28	30	32	35	38	40	42	45	48	50	55
SFM-060SS- 🗆 B- 🗆 B-60N	d1	٠	٠	٠	٠	٠	٠	٠															
3FM-00033 B B-00N	d2									٠													
SFM-060SS- 🗆 B- 🗆 B-80N	d1								٠	٠	٠	٠	٠	٠									
	d2																						
SFM-070SS- 🗆 B- 🗆 B-90N	d1						٠	•															
3FM-07033 B B-70N	d2									٠					٠								
CEM 07056 D B D B 100N	d1																						
SFM-070SS- 🗆 B- 🗆 B-100N	d2									٠													
SFM-080SS- 🗆 B- 🗆 B-150N	d1													٠									
5FM-06035 B B- 130N	d2									٠													
SFM-080SS- 🗆 B- 🗆 B-200N	d1																٠						
5FM-06035 B B-200N	d2																						
SFM-090SS- 🗆 B- 🗆 B-250N	d1											٠	٠										
3FM-07033- 🗆 B- 🗆 B-230N	d2											٠	٠	٠	٠		٠	٠	٠				
SFM-090SS- 🗆 B- 🗆 B-300N	d1													٠	٠	٠	٠	٠	٠				
SFM-09055- 🗆 B- 🗆 B-300N	d2																٠	٠					
SFM-100SS- 🗆 B- 🗆 B-450N	d1														٠	٠	٠	٠	٠	٠	٠		
SFM-10055- 🗆 B- 🗆 B-450N	d2																٠						
	d1														٠	٠	٠	٠	٠	٠	٠	۲	
SFM-120SS- 🗆 B- 🗆 B-600N	d2																						

* The bore diameters marked with lacksquare are supported as standard bore diameter.


Balance correction

Model	Balance		Sup	ported rotational speed [mir	1 −1]	
(size)	classification	10000 or less	15000 or less	18000 or less	20000 or less	24000 or less
SFM-060SS	G6.3 • G2.5	٠	•	•	•	•
SFM-070SS	G6.3 • G2.5	•	•	•	•	•
SFM-080SS	G6.3 • G2.5	•	•	•	•	•
SFM-090SS	G6.3 • G2.5	•	•	•	•	•
SFM-100SS	G6.3 • G2.5	•	•	•	•	
SFM-120SS	G6.3 • G2.5	•	•	•	•	

* We will perform balance correction for supported rotational speeds marked with lacksquare.

How to Place an Order

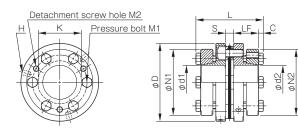
SFM-080SS-25BK-30BK-200N-G2.5/24000

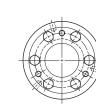
 Supported rotational speed 10000 or less 15000 or less 20000 or less 24000 or less 24000 or less
 Balance classification G6.3, G2.5

Nominal rated torque (see specifications table)

MODELS

SFC													
SFS													
SFF													
SFM	 	•••		•					•			•	•
SFH	 •••	•••							•				•


SFM Models Wedge Coupling


Specifications

			Misalignment		Max. rotation	Torsional	Axial	Moment of	
Model	Rated torque [N•m]	Parallel [mm]	Angular [°]	Axial [mm]	speed [min ⁻¹]	stiffness [N•m/rad]	stiffness [N/mm]	inertia [kg•m²]	Mass [kg]
SFM-070SS- 🗆 K- 🗆 K-100N	100	0.02	1	± 0.5	24000	240000	484	0.66 × 10 ⁻³	0.92
SFM-080SS- 🗆 K- 🗆 K-150N	150	0.02	1	± 0.5	24000	120000	96	1.21 × 10 ⁻³	1.03
SFM-080SS- 🗆 K- 🗆 K-200N	200	0.02	1	± 0.5	24000	310000	546	1.11 × 10 ⁻³	1.26
SFM-090SS- 🗆 K- 🗆 K-300N	300	0.02	1	± 0.6	24000	520000	321	1.75 × 10 ⁻³	1.48
SFM-100SS- 🗆 K- 🗆 K-450N	450	0.02	1	± 0.65	20000	740000	540	2.56 × 10 ⁻³	1.87
SFM-120SS- 🗆 K- 🗆 K-600N	600	0.02	1	± 0.8	20000	970000	360	5.33 × 10 ⁻³	2.50
SFM-140SS- 🗆 K- 🗆 K-800N	800	0.02	1	± 1.0	20000	1400000	360	10.28 × 10 ⁻³	4.66
SFM-140SS- 🗆 K- 🗆 K-1000N	1000	0.02	1	± 1.0	20000	1400000	360	14.70 × 10 ⁻³	5.01

* Torsional stiffness values given are calculated for the element alone. * The moment of inertia and mass are measured for the maximum bore diameter.

Dimensions

Model	d1 [mm]	d2 [mm]	D [mm]	L [mm]	N1 • N 2 [mm]	LF [mm]	S [mm]	C [mm]	K [mm]	H [mm]	M 1 Qty - Nominal dia.	M1 Tightening torque [N • m]																														
	18 · 19	18 • 19			53																																					
	20 · 22 · 24 · 25	20 • 22 • 24 • 25	60	(2.0	58	22.5	5.0	-	20	2 5 1	6.146	10	2.146																													
SFM-070SS- 🗆 K- 🗆 K-100N	28 · 30	28 • 30	68	62.9	63	23.5	5.9	5	38	3-5.1	6-M6	10	3-M6																													
	32 • 35	32 • 35			68																																					
	22 • 24 • 25	22 · 24 · 25			58																																					
SFM-080SS- 🗆 K- 🗆 K-150N	28 · 30	28 • 30	78	69.3	63	25.5	8.3	5	37	4-5.1	4-M6	10	2-M6																													
SFM-06055- C K- C K-150N	32 • 35	32 • 35	70	09.5	68	25.5	0.5	3	57	4-3.1	4-1110	10	2-110																													
	-	38			73																																					
	22 • 24 • 25	22 · 24 · 25			58																																					
SFM-080SS- 🗆 K- 🗆 K-200N	28 · 30	28 • 30	78	68.7	63	25.5	7.7	F	42	3-5.1	6-M6	10	3-M6																													
SFM-08055- 🗆 K- 🗆 K-200N	32 · 35	32 • 35	/8	08.7	68	25.5	7.7	5	42	3-3.1	0-110	10	2-1110																													
	38	38			73																																					
	28 · 30	28 • 30			63																																					
	32 • 35	32 • 35			68																																					
SFM-090SS- 🗆 K- 🗆 K-300N	38 • 40 • 42	38 • 40 • 42	88	69.3	69.3	73	25.5	8.3	5	50	3-6.8	6-M6	10	3-M6																												
	45	45				78																																				
	48	48			83																																					
	32 · 35	32 • 35	98	98	75.2	68																																				
SFM-100SS- 🗆 K- 🗆 K-450N	38 · 40 · 42	38 · 40 · 42				73	27.5	10.2	5	56	3-6.8	6-M6	10	3-M6																												
SFM-10055- 🗆 K- 🗆 K-450N	45	45		/5.2		78	27.5	10.2	Э	50	5-0.8	0-110	10	2-1110																												
	48 • 50	48 • 50									83																															
	35	35				68																																				
	38 · 40 · 42	38 • 40 • 42				73																																				
	45	45				78																																				
SFM-120SS- 🗆 K- 🗆 K-600N	48 • 50 • 52	48 • 50 • 52	118	75.2	83	27.5	10.2	5	68	3-6.8	6-M6	10	3-M6																													
	55	55			88																																					
	60 · 62 · 65	60 · 62 · 65			98																																					
	-	70			108																																					
	35 • 38	35 • 38			83																																					
	40 · 42 · 45	40 · 42 · 45			88																																					
	_	48 • 50 • 52	120	04.6	98	26.5	10.6		70	200	6 140	24	2 140																													
SFM-140SS- 🗌 K- 🗌 K-800N	-	55 · 60	138	94.6	108	36.5	10.6	5.5	78	3-8.6	6-M8	24	3-M8																													
	-	62 · 65 · 70			118																																					
	_	75 • 80			128																																					
	48 • 50 • 52	48 • 50 • 52			98																																					
	55 · 60	55 • 60	120 04 6	130 011	120	120 04 6	120 04.5	120 04 5		120 045	120 01	120 04	120 04	120 0	120	120	120	120 045	139 04 6	430 011		120 011		04.6	20 04.5		04.6	120 04 6	04.6	04.6	04.6			108	26.5	10.6		70	200	6 140	24	2 140
SFM-140SS- 🗆 K- 🗆 K-1000N	62 · 65 · 70	62 · 65 · 70	138	94.6	118	36.5	10.6	5.5	5 78	3-8.6	6-M8	24	3-M8																													
	75	75 • 80			128																																					

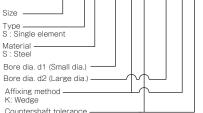
* The nominal diameters of the pressure bolt M1 and detachment screw hole M2 are equal to the quantity minus the nominal diameter of the screw threads. The quantities of H, M1 and M2 are the same as the quantity for a hub on one side.

SFM Models Wedge Coupling

Standard Bore Diameter

Madal		Standard bore diameter d1·d2 [mm]																							
Model	Nominal diameter	18	19	20	22	24	25	28	30	32	35	38	40	42	45	48	50	52	55	60	62	65	70	75	80
SFM-070SS- 🗆 K- 🗆 K-100N	d1	٠	٠	٠	٠	٠	٠	٠	۲	٠	۲														
SFM-07035- C K- C K- 100N	d2	۲			٠	٠		٠	٠		٠														
SFM-080SS- 🗆 K- 🗆 K-150N	d1				٠			٠	٠	٠	۲														
3FM-00033 K K-130N	d2										٠														
SFM-080SS- 🗆 K- 🗆 K-200N	d1				٠			٠	٠	٠	۲														
3FM-00033 K K-200N	d2				٠	٠		٠	٠		۲														
SFM-090SS- 🗆 K- 🗆 K-300N	d1							٠	٠	٠	۲		٠	٠											
3FM-07033 K K-300N	d2										٠														
SFM-100SS- 🗆 K- 🗆 K-450N	d1										۲			٠		٠									
3FM-10033- 🗆 K- 🗆 K-430N	d2										۲			٠											
SFM-120SS- 🗆 K- 🗆 K-600N	d1										۲			٠		٠		۲	۲		٠	٠			
SFM-12035- C K- C K-000N	d2										۲			۲					۲						
SFM-140SS- 🗆 K- 🗆 K-800N	d1										۲			٠											
SFM-140SS- 🗆 K- 🗆 K-800N	d2										۲			۲					۲			٠		٠	۲
SFM-140SS- 🗆 K- 🗆 K-1000N	d1															٠	٠	٠	٠		٠	٠	٠	٠	
3FM-14033- L K- L K-1000N	d2															٠	٠	٠	٠	٠	٠	٠	٠	٠	٠

* The bore diameters marked with
are supported as standard bore diameter.


Balance correction

			Sun	ported rotational speed [mir	-1]	
Model (size)	Balance classification	10000 or less	15000 or less	18000 or less	20000 or less	24000 or less
		Toood of less	15000 01 less	18000 01 less	2000 01 less	24000 01 less
SFM-070SS	G6.3 • G2.5	•	•	•	•	•
SFM-080SS	G6.3 • G2.5	•	•	•	•	•
SFM-090SS	G6.3 • G2.5	•	•	•	•	•
SFM-100SS	G6.3 • G2.5	•	•	•	•	
SFM-120SS	G6.3 • G2.5	•	•	•	•	
SFM-140SS	G6.3 • G2.5	•	•	•	•	

* We will perform balance correction for supported rotational speeds marked with •.

How to Place an Order

SFM-080SS-25KK-30KK-200N-G2.5/24000

Countershaft tolerance Blank: h7, K: k6, M: m6, J: j6, S: 35^{+0.010}

SFF			
SFM	 	 	
SFH	 	 	

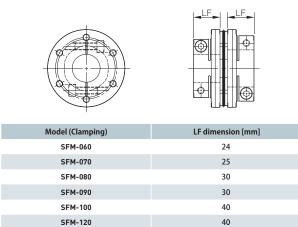
Items Checked for Design Purposes

Special Items to Take Note of

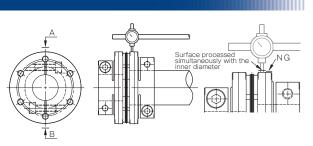
You should note the following to prevent any problems.

(1) Always be careful of parallel, angular, and axial misalignment.

(2) Always tighten bolts with the specified torque.


Precautions for Handling

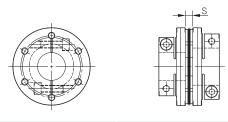
Couplings are assembled at high accuracy using a special mounting jig to ensure accurate concentricity of left and right internal diameters. Take extra precautions when handling couplings, should strong shocks be given on couplings, it may affect mounting accuracy and cause the parts to break during use.


- (1) Couplings are designed for use within an operating temperature range of -30° C to 120°C. Although the couplings are designed to be waterproof and oilproof, do not subject them to excessive amounts of water and oil as it may cause part deterioration.
- (2) Handle the element with care as it is made of a thin stainless steel metal disc, also making sure to be careful so as not to injure yourself.
- (3) Do not tighten up clamping bolts or pressure bolts until after inserting the mounting shaft.

Mounting (Clamping)

- (1) Check that coupling clamping bolts have been loosened and remove any rust, dust, oil residue, etc. from the inner diameter surfaces of the shaft and couplings. In particular, never allow oil or grease containing antifriction or other agent (molybdenum-, silicon-, or fluorine-based), which would dramatically affect the friction coefficient, to contact the surface.
- (2) Be careful when inserting the couplings into the shaft so as not to apply excessive force of compression or tensile force to the element.
- (3) Ensure that the length of the coupling inserted onto the motor shaft touches the shaft for the entire length of the clamping hub of the coupling (LF dimension), as shown in the diagram below, and position it so that it does not interfere with the elements, spacers or the other shaft. Then temporarily tighten the two clamping bolts, tightening them alternately until the coupling cannot be manually rotated.

(4) Hold a dial gauge against the outer diameter of the clamping hub on the motor shaft side (the surface processed simultaneously with the inner diameter), and then tighten the two clamping bolts while turning the motor shaft by hand and adjusting the difference in the runout values at A and B in the figure below is 0.02 mm or less (and as close to 0 as possible).

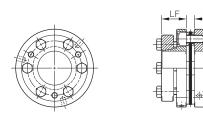


(5) Alternately fasten the two clamping bolts as you adjust them, and finish by tightening both bolts to the appropriate tightening torque of the following table, using a calibrated torque wrench.

Since it is fastened by two clamping bolts, tightening one bolt before the other will place more than the prescribed axial force on the bolt tightened first when the other bolt is tightened. Be sure to tighten them alternately, a little at a time.

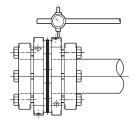
Clamping bolt nominal diameter	Tightening torque [N·m]
M5	7
M6	14
M8	34
M10	68

- (6) Mount the motor, to which the coupling has already been mounted, on the body of the machinery. At that time, adjust the motor mounting position (centering location) while inserting the coupling onto the driven shaft, being alert to undue forces on the element such as compression or pulling.
- (7) Make the length of the driven shaft inserted into the coupling connect to the shaft for the length of the LF dimension (described above), alternately tighten the two clamping bolts, and provisionally tighten enough that the coupling cannot be manually rotated.
- (8) In addition, keep the dimension between clamping hub faces (the S dimension in the diagram) to within the allowable misalignment of the axial displacement with respect to a reference value. Note that the tolerance values were calculated based on the assumption that both the level of parallel misalignment and angular deflection are zero. Adjust to keep this value as low as possible.



Model (Clamping)	S dimension [mm]
SFM-060	5.4
SFM-070	5.9
SFM-080 (-150N)	8.3
SFM-080 (-200N)	7.7
SFM-090	8.3
SFM-100	10.2
SFM-120	10.2

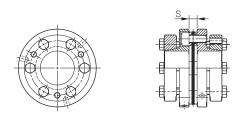
- (9) Adjust runout using the same procedure as for the motor shaft side, and then finish by tightening the clamping bolts to the appropriate tightening torque.
- (10) To protect against initial loosening of the clamping bolt, we recommend operating for a set period of time and then retightening to the appropriate tightening torque.


Mounting (Wedge Coupling)

- (1) Check that coupling pressure bolts have been loosened and remove any rust, dust, oil residue, etc. from the inner diameter surfaces of the shaft and couplings. In particular, never allow oil or grease containing antifriction or other agent (molybdenum-, silicon-, or fluorine-based), which would dramatically affect the friction coefficient, to contact the surface.
- (2) Be careful when inserting the couplings into the shaft so as not to apply excessive force of compression or tensile force to the element.
- (3) Insert each coupling far enough onto the motor shaft that it touches the shaft along the entire length of the coupling flange (LF dimension), as shown in the diagram below. Position it so that it does not interfere with the elements, spacers or the other shaft and then hold it in place.

Model (Wedge coupling)	LF dimension [mm]
SFM-070	23.5
SFM-080	25.5
SFM-090	25.5
SFM-100	27.5
SFM-120	27.5
SFM-140	36.5

- (4) Using the drive pin hole, lightly tighten the pressure bolt on the diagonal.
- (5) Touch the dial gauge to the flange end face or outer diameter on the motor shaft side. Then, while gently rotating the motor shaft manually, adjust the flange periphery and end face by hammering until the runout is as close to zero as possible.



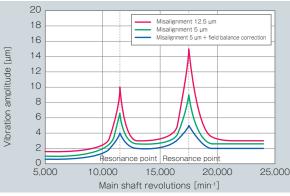
(6) Sequentially fasten the pressure bolts while doing hammering adjustments, and then use a calibrated torque wrench to tighten all the pressure bolts to the appropriate tightening torques below. See the following figure for the tightening procedure for the pressure bolts. Try to tighten them evenly.

Pressure bolt nominal diameter	Tightening torque [N·m]
M6	10
M8	24

- (7) Tighten the motor shaft's pressure bolts at the nominal torque and check that the runout value is low.
- (8) Mount the motor, to which the coupling has already been mounted, on the body of the machinery. At that time, adjust the motor mounting position (centering location) while inserting the coupling onto the driven shaft, being alert to any deformation of the disc, etc. Make the length of the driven shaft inserted into the coupling be in contact with the entire length of the coupling flange (LF dimension), and maintain it at that position.

(9) Keep the width of the dimension between flange faces (S dimension in the diagram) within the allowable error range for axial misalignment with respect to the reference value. Note that the tolerance values were calculated based on the assumption that both the level of parallel misalignment and angular deflection are zero. Adjust to keep this value as low as possible.

Model	S dimension [mm]
SFM-070	5.9
SFM-080 (-150N)	8.3
SFM-080 (-200N)	7.7
SFM-090	8.3
SFM-100	10.2
SFM-120	10.2
SFM-140	10.6

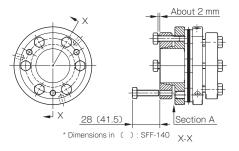

- (10) Tighten the pressure bolts on the driven shaft in order using the same procedure as for the pressure bolts on the motor shaft side, and then finish by tightening to the appropriate tightening torque.
- (11) To protect against initial loosening of the pressure bolt, we recommend operating for a set period of time and then retightening to the appropriate tightening torque.

Important when Combining for High-Revolution (Main Shaft) Applications

For high-revolution applications such as a machining center main shaft, vibration can become an issue.

One cause of vibration at high revolutions is misalignment of shaft axes when combining the spindle motor and the main shaft, with vibration still occurring even with balance correction of the coupling itself.

While it is possible to allow for some misalignment occurring as parallel, angular, or axial displacement, it is particularly important to take care with misalignment with high-revolution applications. Be sure to perform axial adjustment during assembly and field balance correction after assembly.


MODELS	
SFC	
SFS	
SFF	
SFM	
SFH	

*Couplings used in the above measurements had undergone balance correction on an individual basis.

Items Checked for Design Purposes

Removal

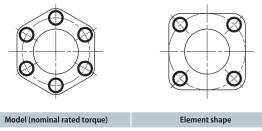
- (1) Check to confirm that there is no torque or axial load being applied to the coupling. There may be cases where a torque is applied to the coupling, particularly when the safety brake is being used. Make sure to verify that this is not occurring before removing parts.
- (2) Loosen all the clamping bolts or pressure bolts (loosen pressure bolts until the gap between bearing seat and sleeve is about 2mm).
- (3) For clamping type, release the fastening to the shaft by sufficiently loosening all clamping bolts. Note that grease has been applied to the clamping bolts, so do not remove them all the way.
- (4) In the case of a wedge coupling system that tightens a pressure bolt from the axial direction, the sleeve will be self-locking, so the coupling between flange and shaft cannot be released simply by loosening the pressure bolt. (Note that in some cases, a coupling can be released by loosening a pressure bolt.) For that reason, when designing devices, a space must be installed for inserting a detachment screw.

- (5) Pull out three of the pressure bolts (two 080, 150 N) loosened in step (2), insert them into the detachment screw holes on the sleeve, and tighten them in order, a little at a time. The coupling will be released.
- (6) If there is no space in the axial direction, insert the tip of a flathead screwdriver or the like into part A and lightly tap perpendicular to the shaft or use it as a lever to pry off the coupling. Use appropriate caution to not damage the coupling body or the pressure bolts.

Suitable Torque Screwdriver/Torque Wrench Clamping bolt

Nominal bolt diameter	Tightening torque [N • m]	Torque screwdriver/ wrench	Hexagon bit/ head	Coupling size
М5	7	N10LTDK	SB 4mm	060
M6	14	N25LCK	25HCK 5mm	060 · 070 · 080
M8	34	N50LCK	50HCK 6mm	080 · 090
M10	68	N100SPCK $ imes$ 68N \cdot m	100HCK 8mm	100 · 120

* Torque screwdriver (wrench)/bit (head) models are those of Nakamura Mfg. Co., Ltd.


Pressure bolt

Nominal bolt diameter	Tightening torque [N • m]	Torque wrench	Spanner head	Coupling size
M6	10	$\text{N12SPCK} \times 10\text{N} \boldsymbol{\cdot} \text{m}$	25SCK 10mm	$070 \sim 120$
M8	24	$\text{N50SPCK} \times 24\text{N} \boldsymbol{\cdot} \text{m}$	50SCK 13mm	140

* Torque wrench/spanner head models are those of Nakamura Mfg. Co., Ltd

Differences in Torsional Stiffness due to Element Shape

Elements used by SFM models may be either square or hexagonal. Since torque is transmitted by coupling the hubs to each other via the element, torsional stiffness is higher in couplings that use hexagonal elements transmitting torque with six bolts, at the expense of some flexibility. Choose your element shape accordingly.

Model (nominal rated torque)	Element shape
SFM-060	Hexagonal
SFM-070	Hexagonal
SFM-080 (-150N)	Square
SFM-080 (-200N)	Hexagonal
SFM-090	Hexagonal
SFM-100	Hexagonal
SFM-120	Hexagonal
SFM-140	Hexagonal

Clamping and Wedge Coupling in Combination

For the range of common sizes between clamping and wedge coupling (070 - 120), a common element is used per each size allowing you to use them in combination.

When specifying bore diameters in this instance, specify d1: clamping, d2: wedge coupling in that order, regardless of larger and smaller bore diameters.

Example) SFM-080SS-30B-25K-200N-G2.5/24000

Rated torques after combination are given for the clamping side. See the table below.

d1 clamping (desig	gnation B)	d2 wedge coupling (d	d2 wedge coupling (designation K)				
Model	Bore diameter range [mm]	Model	Bore diameter range [mm]	after combination [N⋅m]			
SFM-070 (-90N)	18 · 19	SFM-070 (-100N)	$18\sim35$	90			
SFM-070 (-100N)	$20 \sim 35$	SFM-070 (-100N)	$18 \sim 35$	100			
SFM-080 (-150N)	$22 \sim 35$	SFM-080 (-150N)	$22 \sim 38$	150			
SFM-080 (-200N)	22~38	SFM-080 (-200N)	$22 \sim 38$	200			
SFM-090 (-250N)	25 · 28	SFM-090 (-300N)	$28 \sim 48$	250			
SFM-090 (-300N)	30~42	SFM-090 (-300N)	$28 \sim 48$	300			
SFM-100 (-450N)	$32 \sim 48$	SFM-100 (-450N)	$32\sim50$	450			
SFM-120 (-600N)	32~55	SFM-120 (-600N)	$35 \sim 70$	600			

Selection Procedures

(1) Find the torque, Ta, applied to the coupling using the output capacity, P, of the driver and the usage rotation speed, n.

Ta
$$[N \cdot m] = 9550 \times \frac{P [kW]}{n [min^{-1}]}$$

(2) Determine the factor K from the load properties, and find the corrected torque, Td, applied to the coupling.

Td $[N \cdot m] = Ta [N \cdot m] \times K$ (Refer to the table below for values)

	Constant	Vibrations: Small	Vibrations: Medium	Vibrations: Large
Load properties	\int	\bigwedge	fron	Mr
к	1.0	1.25	1.75	2.25

For servo motor drive, multiply the maximum torque, Ts, by the usage factor $K=1.2 \mbox{ to } 1.5.$

Td $[N \cdot m] = Ts [N \cdot m] \times (1.2 \sim 1.5)$

For high-revolution applications such as a machining center main shaft, it is necessary to set a high safety factor unlike common feed screw systems.

Multiply the maximum torque of spindle motor: Ts by the service factor: K=3 to 3.6.

Td $[N \cdot m] = Ts [N \cdot m] \times (3 \sim 3.6)$

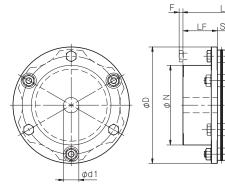
(3) Set the size so that the rated coupling torque, Tn, is higher than the corrected torque, Td.

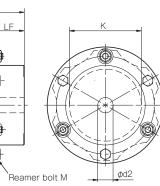
$Tn [N \cdot m] \ge Td [N \cdot m]$

- (4) Check that the mount shaft is no larger than the maximum bore diameter of the coupling.
- * Contact Miki Pulley for assistance with any device experiencing extreme periodic vibrations.

MODEL	S	
SFC		
SFS		
SFF		
SFM		
SFH		

SFH(S) Types Single Element Type


Specification (SFH- 🗌 S) Pilot Bore/Key or Set Screw


	Rated	Misalignment		Max. rotation	Torsional			
Model	torque [N·m]	Angular [°]	Axial [mm]	speed [min ⁻¹]	stiffness [N·m/rad]	Axial stiffness [N/mm]	Moment of inertia [kg·m²]	Mass [kg]
SFH-150S	1000	1	± 0.4	5900	1500000	244	12.60 × 10 ⁻³	4.71
SFH-170S	1300	1	± 0.5	5100	2840000	224	26.88 × 10 ⁻³	7.52
SFH-190S	2000	1	± 0.5	4700	3400000	244	43.82 × 10 ⁻³	10.57
SFH-2105	4000	1	± 0.55	4300	4680000	508	68.48 × 10 ⁻³	13.78
SFH-220S	5000	1	± 0.6	4000	5940000	448	102.53 × 10 ⁻³	18.25
SFH-260S	8000	1	± 0.7	3400	10780000	612	233.86 × 10 ⁻³	29.66

Max. rotation speed does not take into account dynamic balance

* The moment of inertia and mass are measured for the maximum bore diameter.

Dimensions (SFH- 🗌 S) Pilot Bore/Key or Set Screw

Unit [mm]

Model		d1∙d2		D	N	L	LF	s		к	м
	Pilot bore	Min.	Max.	U	N		LF	3	•	ĸ	
SFH-150S	20	22	70	152	104	101	45	11	5	94	6-M8 × 36
SFH-170S	25	28	80	178	118	124	55	14	6	108	6-M10 × 45
SFH-190S	30	32	85	190	126	145	65	15	10	116	6-M12 × 54
SFH-210S	35	38	90	210	130	165	75	15	8	124	6-M16 × 60
SFH-220S	45	48	100	225	144	200	90	20	- 2	132	6-M16 × 60
SFH-260S	50	55	115	262	166	223	100	23	11	150	6-M20 × 80

Pilot bores are to be drilled into the part. See the standard hole-drilling standards of P.86 for information on bore drilling.
 The nominal diameter of the reamer bolt is equal to the quantity minus the nominal diameter of the screw threads times the nominal length.

Size

How to Place an Order

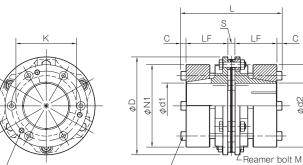
SFH-150S-38H-38H

-Bore diameter: d1 (Small diameter) - d2 (Large diameter) Blank: Pilot bore Type: S Single element

Bore specifications

Blank: Compliant with the old JIS standards (class 2) H: Compliant with the new JIS standards N: Compliant with the new motor standards

SFH(S) Types Single Element Type


Specification (SFH- 🗆 S- 🗆 K- 🗆 K) Frictional Coupling

	Rated	Misalignment		Max.	Torsional	Axial	Moment of	
Model	torque [N·m]	Angular [°]	Axial [mm]	rotation speed [min ⁻¹]	stiffness [N·m/rad]	stiffness [N/mm]	inertia [kg·m²]	Mass [kg]
SFH-150S	1000	1	± 0.4	5900	1500000	244	25.14 × 10 ⁻³	8.95
SFH-170S	1300	1	± 0.5	5100	2840000	224	47.90 × 10 ⁻³	12.53
SFH-190S	2000	1	± 0.5	4700	3400000	244	60.40 × 10 ⁻³	14.21
SFH-210S	4000	1	± 0.55	4300	4680000	508	80.50 × 10 ⁻³	16.12

* Max. rotation speed does not take into account dynamic balance.

* The moment of inertia and mass in the table are measured for the maximum bore diameter.

Dimensions (SFH- C S- K- K) Frictional Coupling

L Detachmer	t screw	hole	M2

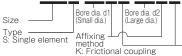
Pressure bolt M1

С

φ d2 øN2

		L	← Detachment screw hole M2			ssure bolt	M1				Unit [mm]	
Model	D	L	d1 • d2	N1 • N2	LF	S	с	К	м	M1	M2	
SFH-150S	152	157	38 • 40 • 42 • 45 • 48 • 50	108	65	11	8	94	6-M8 × 36	6-M8 × 60	3-M8	
3FH-1303	152	157	55 • 56 • 60 • 65 • 70	128 65	05		0	54	0-1010 × 30	0-1010 ~ 00	5-1010	
			38 • 40 • 42 • 45 • 48 • 50	108						6-M8 × 60		
SFH-170S	178	178 160	55•56•60•65•70	128	65	14	8	8 108	6-M10 × 45		3-M8	
			75 • 80	148								
			38 • 40 • 42 • 45 • 48 • 50	108								
SFH-190S	190	175	55•56•60•65•70	128	70 15	15	15 10	116	6-M12 × 54	6-M10 × 65	3-M10	
			75 • 80 • 85	148								
			38 • 40 • 42 • 45 • 48 • 50	108								
SFH-210S	210	210	210 181	55•56•60•65•70	128	73	15	10	124	6-M16 × 60	6-M10 × 65	3-M10
				75 • 80 • 85 • 90	148							

* The nominal diameters of each bolt and tap are equal to the quantity minus the nominal diameter of the screw threads times the nominal length. The quantities for the pressure bolt M1 and detachment screw hole M2 are quantities for the hub on one side.


Standard Bore Diameter

Model		Standard bore diameter d1, d2 [mm]													
Model	38	40	42	45	48	50	55	56	60	65	70	75	80	85	90
SFH-150S	٠	٠	٠	•	•	٠	•	•	•	•	•				
SFH-170S	1100	1200	1250	•	•	•	•	•	•	•	•	•	•		
SFH-190S	1800	1900	•	•	•	•	•	•	•	•	•	•	•	•	
SFH-210S	1800	1900	2000	2150	2300	2400	2600	2650	2850	3100	3350	3600	3800	•	•
* The bore diameters marked with or numbers are supported as standard bore diameter.															

* Bore diameters whose fields contain numbers are restricted in their rated torque by the holding power of the shaft connection component because the bore diameter is small. The numbers indicate the rated torque value [N·m].

How to Place an Order

SFH-150S-38KK-42KK

Countershaft tolerance Blank: h7 (h6 or g6) K: k6 M: m6 J:j6

MODELS SFC SFS SFF SFM

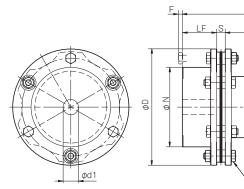
SFH

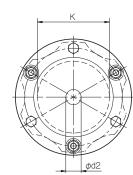
SFH(G) Types Double Element/Floating Shaft Type

Specification (SFH- \Box G) Pilot Bore/Key or Set Screw

	Rated		Misalignment		Max.	Torsional	Axial			
Model	torque [N·m]	Parallel [mm]	Angular [°]	Axial [mm]	rotation speed [min ⁻¹]	stiffness [N·m/rad]	stiffness [N/mm]	Moment of inertia [kg·m²]	Mass [kg]	
SFH-150G	1000	1.4	1 (On one side)	± 0.8	5900	750000	122	21.87 × 10 ⁻³	8.72	
SFH-170G	1300	1.6	1 (On one side)	± 1.0	5100	1420000	112	51.07 × 10 ⁻³	13.94	
SFH-190G	2000	2.0	1 (On one side)	± 1.0	4700	1700000	122	81.58 × 10 ⁻³	19.51	
SFH-210G	4000	2.1	1 (On one side)	± 1.1	4300	2340000	254	125.50 × 10 ⁻³	24.26	
SFH-220G	5000	2.3	1 (On one side)	± 1.2	4000	2970000	224	176.91 × 10 ⁻³	30.27	
SFH-260G	8000	2.9	1 (On one side)	± 1.4	3400	5390000	306	433.47 × 10 ⁻³	53.11	

I S

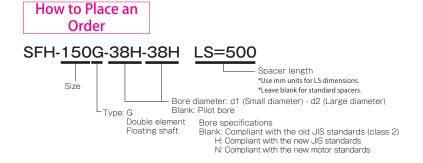

SI_ LF


Reamer bolt M

* Max. rotation speed does not take into account dynamic balance.

* The moment of inertia and mass are measured for the maximum bore diameter.

Dimensions (SFH- 🗌 G) Pilot Bore/Key or Set Screw


Unit [mm]

Model	d1·d2			D	N	L	LF	LS	ç	-	V	м
Model	Pilot bore	Min.	Max.	U	N		LF	LS	3	r	ĸ	
SFH-150G	20	22	70	152	104	182	45	70	11	5	94	12-M8 × 36
SFH-170G	25	28	80	178	118	218	55	80	14	б	108	12-M10 × 45
SFH-190G	30	32	85	190	126	260	65	100	15	10	116	12-M12 × 54
SFH-210G	35	38	90	210	130	290	75	110	15	8	124	12-M16 × 60
SFH-220G	45	48	100	225	144	335	90	115	20	- 2	132	12-M16 × 60
SFH-260G	50	55	115	262	166	391	100	145	23	11	150	12-M20 × 80

* Pilot bores are to be drilled into the part. See the standard hole-drilling standards of P.86 for information on bore drilling.

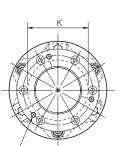
* If you require a product with an LS dimension other than that above, contact Miki Pulley with your required dimension [mm]. Please contact Miki Pulley for assistance if LS \geq 1000.

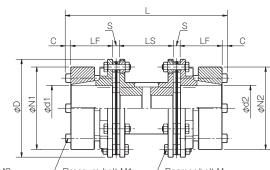
* The nominal diameter of the reamer bolt is equal to the quantity minus the nominal diameter of the screw threads times the nominal length.

Maximum LS Dimension When Used Vertically

Model	LS [mm]
SFH-150G	1100
SFH-170G	800
SFH-190G	900
SFH-210G	2000
SFH-220G	1900
SFH-260G	2500

* When considering vertical use and the LS dimension is greater than that in the above table, consult Miki Pulley.


SFH(G) Types Double Element/Floating Shaft Type


Specification (SFH- 🗆 G- 🗆 K- 🗆 K) Frictional Coupling

	Rated		Misalignment		Max.	Torsional	Axial	Moment of		
Model	torque [N·m]	Parallel [mm]	Angular [°]	Axial [mm]	rotation speed [min ⁻¹]	stiffness [N·m/rad]	stiffness [N/mm]	inertia [kg·m²]	Mass [kg]	
SFH-150G	1000	1.4	1 (On one side)	± 0.8	5900	750000	122	34.41 × 10 ⁻³	12.96	
SFH-170G	1300	1.6	1 (On one side)	± 1.0	5100	1420000	112	72.09 × 10 ⁻³	18.95	
SFH-190G	2000	2.0	1 (On one side)	± 1.0	4700	1700000	122	98.15 × 10 ⁻³	23.14	
SFH-210G	4000	2.1	1 (On one side)	± 1.1	4300	2340000	254	137.53 × 10 ⁻³	26.61	

* Max. rotation speed does not take into account dynamic balance. * The moment of inertia and mass in the table are measured for the maximum bore diameter.

Dimensions (SFH- 🗆 G- 🗆 K- 🗆 K) Frictional Coupling

Detachment screw hole M2

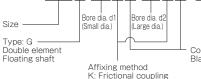
Pressure bolt M1 ∠ Reamer bolt M

		- Deta	Detachment screw hole M2			← Pressure bolt M I			← Reamer bolt M			
Model	D	L	d1 • d2	N1 • N2	LF	LS	S	с	K	М	M1	M2
SFH-150G	152	238	38 • 40 • 42 • 45 • 48 • 50	108	65	70	11	8	94	12-M8 × 36	6-M8 × 60	3-M8
3FH-1300	152	230	55 • 56 • 60 • 65 • 70	128	05	70		0	94	12-1010 × 50	0-1010 × 00	5-1010
	SFH-170G 178 254		38 • 40 • 42 • 45 • 48 • 50	108								
SFH-170G		254	55 • 56 • 60 • 65 • 70	128	65	80	14	8	108	12-M10 × 45	6-M8 × 60	3-M8
			75 • 80	148								
			38 • 40 • 42 • 45 • 48 • 50	108								
SFH-190G	190	290	55 • 56 • 60 • 65 • 70	128	70	100	15	10	116	12-M12 × 54	6-M10 × 65	3-M10
			75 • 80 • 85	148								
			38 • 40 • 42 • 45 • 48 • 50	108								
SFH-210G	210	210 306	55 • 56 • 60 • 65 • 70	128	73	110) 15	10	124	12-M16 × 60	6-M10 × 65	3-M10
			75 • 80 • 85 • 90	148								

* If you require a product with an LS dimension other than that above, contact Miki Pulley with your required dimension [mm]. Please contact Miki Pulley for assistance if LS ≧ 1000.

* The nominal diameters of each bolt and tap are equal to the quantity minus the nominal diameter of the screw threads times the nominal length. The quantities for the pressure bolt M1 and detachment screw hole M2 are quantities for the hub on one side

Standard Bore Diameter


Model		Standard bore diameter d1, d2 [mm]													
Model	38	40	42	45	48	50	55	56	60	65	70	75	80	85	90
SFH-150G	٠	•	•	•	•	•	•	•	•	٠	٠				
SFH-170G	1100	1200	1250	•	•	•	•	•	•	•	•	•	•		
SFH-190G	1800	1900	•	•	•	•	•	•	•	•	•	•	•	•	
SFH-210G	1800	1900	2000	2150	2300	2400	2600	2650	2850	3100	3350	3600	3800	•	•

* The bore diameters marked with • or numbers are supported as standard bore diameter.

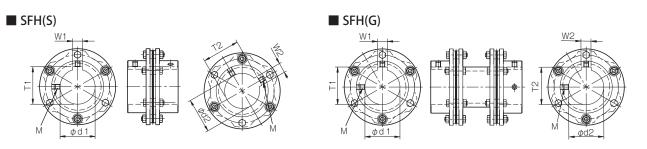
* Bore diameters whose fields contain numbers are restricted in their rated torque by the holding power of the shaft connection component because the bore diameter is small. The numbers indicate the rated torque value [N·m].

How to Place an Order

SFH-150G-38KK-42KK LS=500

Spacer length *Use mm units for LS dimensions. *Leave blank for standard spacers. Countershaft tolerance Blank: h7 (h6 or g6) K: k6 M: m6 J:j6

Maximum LS Dimension When Used Vertically


	•
Model	LS [mm]
SFH-150G	1100
SFH-170G	800
SFH-190G	900
SFH-210G	2000

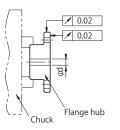
* When considering vertical use and the LS dimension is greater than that in the above table, consult Miki Pulley.

MODELS SFC SFS SFF SFM SFH

Standard Hole-Drilling Standards

- Positioning precision for keyway milling is determined by sight, so contact Miki Pulley when the keyway requires a positioning precision for a particular flange hub.
- Set screw positions are not on the same plane.
- The set screws are included with the product.
- Consult the technical documentation at the end of this volume for standard dimensions for bore processing other than those given here.

Unit [mm]


Mode	ls compliant	with the old	JIS standard	ls (class 2)	M	odels compl	iant with the	new JIS star	ndards	Мос	lels complia	nt with the n	ew motor sta	indards
Nominal bore diameter	Bore diameter [d1 • d2]	Keyway width [W1·W2]	Keyway height [T1·T2]	Set screw hole [M]	Nominal bore diameter	Bore diameter [d1 • d2]	Keyway width [W1·W2]	Keyway height [T1·T2]	Set screw hole [M]	Nominal bore diameter	Bore diameter [d1 • d2]	Keyway width [W1·W2]	Keyway height [T1·T2]	Set screw hole [M]
Tolerance	H7	E9	-	-	Tolerance	H7	H9	-	-	Tolerance	G7, F7	H9	-	-
22	22 ^{+ 0.021}	$7 {}^{+ 0.061}_{+ 0.025}$	25.0 ^{+ 0.3}	2-M6	22H	22 ^{+ 0.021}	6 ^{+ 0.030}	24.8 ^{+ 0.3}	2-M5	-	-	-	-	-
24	24 ^{+ 0.021}	$7 ^{+ \ 0.061}_{+ \ 0.025}$	27.0 ^{+ 0.3}	2-M6	24H	$24 {}^{+ 0.021}_{0}$	$8^{+0.036}_{0}$	27.3 ^{+ 0.3}	2-M6	24N	$24 \ ^{+ \ 0.028}_{+ \ 0.007}$	8 + 0.036	27.3 ^{+ 0.3}	2-M6
25	25 ^{+ 0.021}	$7 {}^{+ 0.061}_{+ 0.025}$	28.0 ^{+ 0.3}	2-M6	25H	$25 {}^{+ 0.021}_{0}$	$8^{+0.036}_{0}$	28.3 ^{+ 0.3}	2-M6	-	-	-	-	-
28	28 ^{+ 0.021}	$7^{+0.061}_{+0.025}$	31.0 ^{+ 0.3}	2-M6	28H	28 ^{+ 0.021}	8 + 0.036	31.3 ^{+ 0.3} ₀	2-M6	28N	$28 \ ^{+ \ 0.028}_{+ \ 0.007}$	8 + 0.036	31.3 ^{+ 0.3}	2-M6
30	30 ^{+ 0.021}	$7 ^{+0.061}_{+0.025}$	33.0 ^{+ 0.3}	2-M6	30H	$30 {}^{+ 0.021}_{0}$	$8^{+0.036}_{0}$	33.3 ^{+ 0.3}	2-M6	-	-	-	-	-
32	32 ^{+ 0.025}	$10 {}^{+ 0.061}_{+ 0.025}$	35.5 ^{+ 0.3}	2-M8	32H	$32 {}^{+ 0.025}_{0}$	$10^{+0.036}_{0}$	35.3 ^{+ 0.3}	2-M8	-	-	-	-	-
35	$35 {}^{+ 0.025}_{0}$	$10 {}^{+ 0.061}_{+ 0.025}$	38.5 ^{+ 0.3}	2-M8	35H	$35 {}^{+ 0.025}_{0}$	$10^{+0.036}_{0}$	38.3 ^{+ 0.3}	2-M8	-	-	-	-	-
38	38 ^{+ 0.025}	$10 {}^{+ 0.061}_{+ 0.025}$	41.5 + 0.3	2-M8	38H	38 ^{+ 0.025}	$10^{+0.036}_{0}$	$41.3 {}^{+0.3}_{0}$	2-M8	38N	$38 {}^{+ 0.050}_{+ 0.025}$	$10^{+0.036}_{0}$	41.3 ^{+ 0.3}	2-M8
40	40 + 0.025	$10 {}^{+ 0.061}_{+ 0.025}$	43.5 + 0.3	2-M8	40H	$40 {}^{+ 0.025}_{0}$	$12^{+0.043}_{0}$	43.3 ^{+ 0.3} ₀	2-M8	-	-	-	-	-
42	$42^{+0.025}_{0}$	$12 {}^{+ 0.075}_{+ 0.032}$	45.5 ^{+ 0.3}	2-M8	42H	$42 {}^{+ 0.025}_{0}$	$12^{+0.043}_{0}$	$45.3 {}^{+0.3}_{0}$	2-M8	42N	$42 {}^{+ 0.050}_{+ 0.025}$	12 ^{+ 0.043}	45.3 ^{+ 0.3}	2-M8
45	$45 {}^{+ 0.025}_{0}$	$12 {}^{+ 0.075}_{+ 0.032}$	48.5 + 0.3	2-M8	45H	$45 {}^{+ 0.025}_{0}$	$14 {}^{+ 0.043}_{0}$	48.8 ^{+ 0.3}	2-M10	-	-	-	-	-
48	$48^{+0.025}_{0}$	$12 {}^{+ 0.075}_{+ 0.032}$	51.5 ^{+ 0.3}	2-M8	48H	$48 {}^{+ 0.025}_{0}$	$14^{+0.043}_{0}$	51.8 ^{+0.3} ₀	2-M10	48N	$48 \ ^{+ \ 0.050}_{+ \ 0.025}$	$14 {}^{+ 0.043}_{0}$	51.8 ^{+ 0.3}	2-M10
50	50 ^{+ 0.025}	$12 \ ^{+ \ 0.075}_{+ \ 0.032}$	53.5 ^{+ 0.3}	2-M8	50H	$50 {}^{+ 0.025}_{0}$	$14^{+0.043}_{0}$	53.8 ^{+0.3} ₀	2-M10	-	-	-	-	-
55	$55 {}^{+ 0.030}_{0}$	$15 \ ^{+ \ 0.075}_{+ \ 0.032}$	60.0 ^{+ 0.3}	2-M10	55H	$55 {}^{+ 0.030}_{0}$	$16^{+0.043}_{0}$	59.3 ^{+ 0.3}	2-M10	55N	$55 \ ^{+ \ 0.060}_{+ \ 0.030}$	16 ^{+ 0.043}	59.3 ^{+ 0.3}	2-M10
56	56 ^{+ 0.030}	$15 \ ^{+ \ 0.075}_{+ \ 0.032}$	61.0 ^{+ 0.3}	2-M10	56H	$56 {}^{+ 0.030}_{0}$	$16^{+0.043}_{0}$	60.3 ^{+ 0.3}	2-M10	-	-	-	-	-
60	60 ^{+ 0.030}	$15 \ ^{+ \ 0.075}_{+ \ 0.032}$	65.0 ^{+ 0.3}	2-M10	60H	$60 {}^{+ 0.030}_{0}$	$18^{+0.043}_{0}$	64.4 ^{+ 0.3}	2-M10	60N	$60 \ ^{+ \ 0.060}_{+ \ 0.030}$	$18 {}^{+ 0.043}_{0}$	64.4 ^{+ 0.3}	2-M10
65	65 ^{+ 0.030}	$18 \ ^{+ \ 0.075}_{+ \ 0.032}$	71.0 + 0.3	2-M10	65H	$65 {}^{+ 0.030}_{0}$	$18 {}^{+ 0.043}_{0}$	69.4 ^{+ 0.3}	2-M10	65N	$65 \ ^{+ \ 0.060}_{+ \ 0.030}$	$18 {}^{+ 0.043}_{0}$	69.4 ^{+ 0.3}	2-M10
70	70 + 0.030	$18 {}^{+ 0.075}_{+ 0.032}$	76.0 ^{+ 0.3}	2-M10	70H	$70 {}^{+ 0.030}_{0}$	20 ^{+ 0.052}	74.9 ^{+0.5} ₀	2-M10	-	-	-	-	-
75	$75 {}^{+ 0.030}_{0}$	$20 {}^{+ 0.092}_{+ 0.040}$	81.0 + 0.5	2-M10	75H	$75 {}^{+ 0.030}_{0}$	$20 {}^{+ 0.052}_{0}$	79.9 ^{+0.5}	2-M10	75N	$75 \ ^{+ \ 0.060}_{+ \ 0.030}$	$20 {}^{+ 0.052}_{0}$	79.9 ^{+ 0.5}	2-M10
80	80 + 0.030	$20 {}^{+ 0.092}_{+ 0.040}$	86.0 ^{+ 0.5}	2-M10	80H	$80 {}^{+ 0.030}_{0}$	22 ^{+ 0.052}	85.4 ^{+ 0.5}	2-M12	-	-	-	-	-
85	$85 {}^{+ 0.035}_{0}$	$24 \ ^{+ \ 0.092}_{+ \ 0.040}$	93.0 ^{+ 0.5}	2-M12	85H	$85 {}^{+ 0.035}_{0}$	22 ^{+ 0.052}	90.4 ^{+ 0.5}	2-M12	85N	$85 \ ^{+ \ 0.071}_{+ \ 0.036}$	22 ^{+ 0.052} 0	90.4 ^{+ 0.5}	2-M12
90	90 + 0.035	$24 \ ^{+ \ 0.092}_{+ \ 0.040}$	98.0 ^{+ 0.5}	2-M12	90H	$90 {}^{+ 0.035}_{0}$	$25 {}^{+ 0.052}_{0}$	95.4 ^{+ 0.5}	2-M12	-	-	-	-	-
95	95 ^{+ 0.035}	$24 \ ^{+ \ 0.092}_{+ \ 0.040}$	$103.0 {}^{+ 0.5}_{0}$	2-M12	95H	95 ^{+ 0.035}	$25 {}^{+ 0.052}_{0}$	100.4 $^{+0.5}_{0}$	2-M12	95N	$95 \ {}^{+ 0.071}_{+ 0.036}$	$25 {}^{+ 0.052}_{0}$	100.4 + 0.5	2-M12
100	$100 {}^{+ 0.035}_{0}$	$28 {}^{+ 0.092}_{+ 0.040}$	109.0 + 0.5	2-M12	100H	$100 \ {}^{+ \ 0.035}_{0}$	28 ^{+ 0.052}	$106.4^{+0.5}_{0}$	2-M12	-	-	-	-	-
115	$115 \ {}^{+ \ 0.035}_{0}$	$32 {}^{+ 0.112}_{+ 0.050}$	125.0 ^{+ 0.5}	2-M12	115H	$115 \ {}^{+ \ 0.035}_{0}$	$32 {}^{+ 0.062}_{0}$	122.4 $^{+0.5}_{0}$	2-M12	-	_	-	-	-

Distance from Set Screw Edge

Model	SFH-150	SFH-170	SFH-190	SFH-210	SFH-220	SFH-260
Distance from set screw edge [mm]	15	20	25	30	35	40

Centering and Finishing when Drilling Bores in Flange Hubs

SFH models are delivered in component form. When processing bore diameters in pilot-bore products in particular, adjust the chuck so that runout of each flange hub is no more than the precision of the figure at right, and then finish the inner diameter.

Items Checked for Design Purposes

Special Items to Take Note of

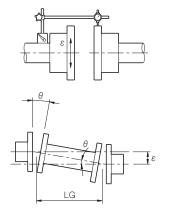
You should note the following to prevent any problems.

(1) Always be careful of parallel, angular, and axial misalignment.

(2) Always tighten bolts with the specified torque.

Precautions for Handling

SFH models are delivered in component form. This mounts a flange hub on each shaft and couples both shafts by mounting the element (spacer) last, while centering. Also, the SFH(S) types can first mount an element on the flange hub, then center, and then complete the coupling before inserting it onto the shaft.


When using the assembly method that completes coupling first, take extra precautions when handling couplings. Subjecting assembled couplings to strong shocks may affect mounting accuracy and cause the parts to break during use.

- (1) Couplings are designed for use within an operating temperature range of -30° C to 120°C. Although the couplings are designed to be waterproof and oilproof, do not subject them to excessive amounts of water and oil as it may cause part deterioration.
- (2) Handle the element with care as it is made of a thin stainless steel metal disc, also making sure to be careful so as not to injure yourself.
- (3) For frictional coupling types, do not tighten up pressure bolts until after inserting the mounting shaft.

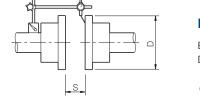
Centering

Parallel misalignment (ε)

Lock the dial gauge in place on one shaft and then measure the runout of the paired flange hub's outer periphery while rotating that shaft. Since couplings on which the elements (discs) are a set SFH(S) types do not allow parallel misalignment, get as close to zero as possible. For couplings that allow the entire length to be freely set SFH(G) types, use the following formula to calculate allowable parallel misalignment.

$\varepsilon = \tan \theta \times LG$

 ε : Allowable parallel misalignment θ : 1°


LG = LS + S

LS: Total length of spacer S: Dimension of gap between flange hub and spacer

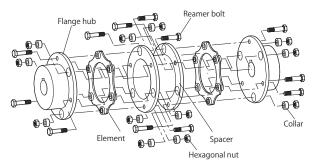
Angular deflection(θ)

Lock the dial gauge in place on one shaft and then measure the runout of the end surface near the paired flange hub's outer periphery while rotating that shaft.

Adjust runout B so that $\theta \leq 1^{\circ}$ in the following formula.

$B = D \times tan \theta$

B: Runout
 D: Flange hub outer diameter
 θ:1°


Axial displacement (S)

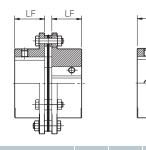
In addition, restrict the dimension between flange hub faces (S in the diagram) within the allowable error range for axial displacement with respect to a reference value. Note that the tolerance values were calculated based on the assumption that both the level of parallel misalignment and angular deflection are zero. Adjust to keep this value as low as possible.

* On the SFH(S), this is the dimension of the gap between two flange hubs. On the SFH (G), dimension S is the gap between the flange hub and the spacer.

Mounting

This assembly method mounts a flange hub on each shaft of the SFH models and couples both shafts by mounting the element (spacer) last, while centering.

(1) Remove any rust, dust, oil or the like from the inner diameter surfaces of the shaft and flange hubs. In particular, never allow oil or grease containing antifriction or other agent (molybdenum-, silicon-, or fluorine-based), which would dramatically affect the friction coefficient, to contact the surface.


For types that use frictional coupling, loosen the flange hub's pressure bolt and check that the sleeve can move freely.

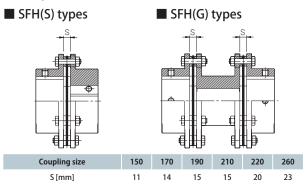
(2) Insert the flange hub onto the paired mounting shaft. Insert each shaft far enough into the coupling so that the paired mounting shaft touches the shaft along the entire length of the flange hub (LF dimension) as shown in the diagram below, and does not interfere with the elements, spacers or the other shaft.

SFH(G) types

SFH(S) types

L

Coupling size	150	170	190	210	220	260
LF (key or set screw) [mm]	45	55	65	75	90	100
LF (frictional coupling) [mm]	65	65	70	73	-	-

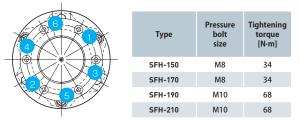

- (3) Mount the other flange hub on the paired mounting shaft as described in steps (1) and (2).
- (4) With the flange hub inserted, center (parallel misalignment and angular deflection), and the adjust the distance between shafts.
- (5) For SFH(S) types, translate the flange hubs on the shaft, insert the element between the two flange hubs, and provisionally assemble with the reamer bolt, collar, and hexagonal nut. For SFH(G) types, insert reamer bolts from the flange side for both flanges, provisionally fasten the element and collar with a hexagonal nut, and then translate the flange hubs on the shaft, insert the spacer between the flange hubs, and provisionally assemble with the reamer bolt, collar and hexagonal nut.

MODELS	
SFC	
SFS	•
SFF	•
SFM	•
SFH	•

Items Checked for Design Purposes

Mounting

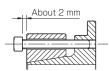
(6) Keep the width of the dimension between flange faces (S dimension in the diagram) within the allowable error range for axial misalignment with respect to the reference value. Note that the tolerance values were calculated based on the assumption that both the level of parallel misalignment and angular deflection are zero. Adjust to keep this value as low as possible.



- (7) Check that the element is not deformed. If it is, it may be under an axial force or there may be insufficient lubrication between the collar, bolt, and disc, so adjust to bring it to normal. The situation may be improved by applying a small amount of machine oil to the bearing surface of the reamer bolt. However, never use any oil or grease containing antifriction or other agent (molybdenum-, silicon-, or fluorine-based) which would dramatically affect the friction coefficient.
- (8) Use a calibrated torque wrench to tighten all the reamer bolts to the appropriate tightening torques.

Coupling size	150	170	190	210	220	260
Reamer bolt size	M8	M10	M12	M16	M16	M20
Tightening torque [N·m]	34	68	118	300	300	570

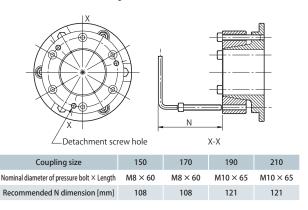
(9) When selecting a key system for the mounting on the shaft, lock the flange hub to the shaft with a set screw.


For frictional coupling types, tighten the pressure bolts evenly, a little at a time, on the diagonal, guided by the tightening procedure of the figure below.

(10)To protect against initial loosening of the pressure bolts, we recommend operating for a set period of time and then retightening to the appropriate tightening torque.

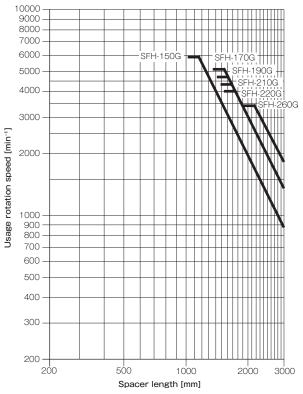
Removal

- (1) Check to confirm that there is no torque or axial load being applied to the coupling. There may be cases where a torque is applied to the coupling, particularly when the safety brake is being used. Make sure to verify that this is not occurring before removing parts.
- (2) Loosen all the pressure bolts placing pressure on the sleeve until the gap between bearing seat and sleeve is about 2 mm.



For a tapered coupling system that tightens pressure bolts from the

axial direction, the sleeve will be self-locking, so the coupling between flange hub and shaft cannot be released simply by loosening the pressure bolt. (Note that in some cases, a coupling can be released by loosening a pressure bolt.) For that reason, when designing devices, a space must be installed for inserting a detachment screw.


If there is no space in the axial direction, consult Miki Pulley.

(3) Pull out three of the pressure bolts loosened in step (2), insert them into detachment screw holes at three locations on the sleeve, and tighten them alternately, a little at a time. The link between the flange hub and shaft will be released.

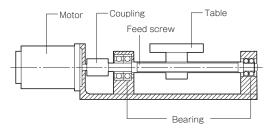
Limit Rotation Speed

For SFH(G) long spacer types, the speeds at which the coupling can be used will vary with the length of spacer selected. Use the following table to confirm that the speed you will use is at or below the limit rotation speed.

Points to Consider Regarding the Feed Screw System

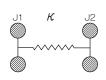
Servo motor oscillation

Gain adjustment on the servo motor may cause the servo motor to oscillate.


Oscillation in the servo motor during operation can cause problems particularly with the overall natural frequency and electrical control systems of the feed screw system.

In order for these issues to be resolved, the torsional stiffness for the coupling and feed screw section and the moment of inertia and other characteristics for the system overall will need to be adjusted and the torsional natural frequency for the mechanical system raised or the tuning function (filter function) for the electrical control system in the servo motor adjusted during the design stage.

Please contact Miki Pulley with any questions regarding servo motor oscillation.


How to Find the Natural Frequency of a Feed Screw System

- (1) Select a coupling based on the nominal and maximum torque of the servo motor.
- (2) Find the overall natural frequency, Nf, from the torsional stiffness of the coupling and feed screw, κ, the moment of inertia of driving side, J1, and the moment of inertia of driven side, J2, for the feed screw system shown below.

$Nf = \frac{1}{2\pi} \sqrt{\kappa \left(\frac{1}{J1} + \frac{1}{J2}\right)}$

- Nf: Overall natural frequency of a feed screw system [Hz]
- κ : Torsional stiffness of the coupling and feed screw [N·m/rad]
- J1: Moment of inertia of driving side [kg·m²]
- J2: Moment of inertia of driven side [kg·m²]


Selection Procedures

(1) Find the torque, Ta, applied to the coupling using the output capacity, P, of the driver and the usage rotation speed, n.

Ta [N·m] = 9550 ×
$$\frac{P [kW]}{n[min^{-1}]}$$

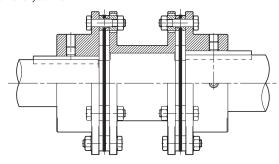
(2) Determine the factor κ from the load properties, and find the corrected torque, Td, applied to the coupling.

$Td = Ta \times K$ (Refer to the table below for values)

For servo motor drive, multiply the maximum torque, Ts, by the usage factor K=1.2 to 1.5.

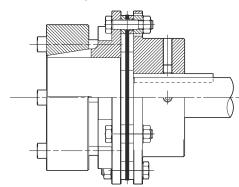
$Td = Ts \times (1.2 \text{ to } 1.5)$

(3) Set the size so that the rated coupling torque, Tn, is higher than the corrected torque, Td.

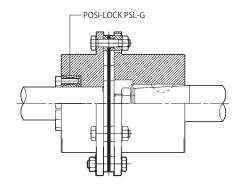

Tn ≧ Td

- (4) The rated torque of the coupling may be limited by the bore diameter of the coupling. See the table showing the bore diameters that limit rated torque.
- (5) Check that the mount shaft is no larger than the maximum bore diameter of the coupling.

Contact Miki Pulley for assistance with any device experiencing extreme periodic vibrations.


■ Mounting Example ■ SFH(G)

This is a combination of multiple standard bore-drilled couplings. Either Miki Pulley can do the processing, or you can drill pilot bores however you like.


SFH(S)

This example combines a frictional-coupling type flange and a standard bore-drilled flange hub.

SFH(S) special

This combines a flange hub processed for the tapered shaft of a servo motor with a flange hub processed for a Miki Pulley shaft lock PSL-G.

MODEL	.s	
SFC		
SFS		
SFF		
SFM		
SFH		

Torque Wrenches

SFC- SA2/DA2 (Clamping Bolt)

Nominal bolt diameter	Tightening torque [N·m]	Torque screwdriver (Preset)	Hexagon bit	Coupling size
M1.6	$0.23 \sim 0.28$	CN30LTDK	CB 1.5mm	002
M2	$0.4 \sim 0.5$	CN60LTDK	SB 1.5mm	005,010
M2.5	1.0 ~ 1.1	CN120LTDK	SB 2mm	010,020,025
M3	1.5 ~ 1.9	CN200LTDK	SB 2.5mm	030
M4	3.4 ~ 4.1	CN500LTDK	SB 3mm	035,040
M5	7.0 ~ 8.5	N10LTDK	SB 4mm	050
Nominal bolt diameter	Tightening torque [N·m]	Torque wrenches (Preset)	Hexagonal head	Coupling size
M6	$14 \sim 15$	N25LCK	25HCK 5mm	055,060
M8	$27 \sim 30$	N50LCK	50HCK 6mm	080,090,100

SFS- S/W/G (Pressure Bolt)

Nominal bolt diameter	Tightening torque [N·m]	Torque wrench (Single-function)	Wrench attachment	Coupling size
M5	8	N12SPCK × 8N • m	230SCK 8mm	05
M6	14	N25SPCK × 14N • m	230SCK 10mm	06,08,09,10
M8	34	N50SPCK × 34N • m	450SCK 13mm	12,14

SFS- S/W/G (Reamer Bolt)

Nominal bolt diameter	Tightening torque [N·m]	Torque wrench (Single-function)	Wrench attachment	Coupling size
M5	8	N12SPCK × 8N • m	25SCK 8mm	05
M6	14	N25SPCK × 14N • m	25SCK 10mm	06,08
M8	34	N50SPCK × 34N • m	50SCK 13mm	09,10
M10	68	N100SPCK × 68N • m	100SCK 17mm	12
M12	118	N200SPCK × 118N • m	200SCK 19mm	14

SFS- S/W/G-C (Reamer Bolt)

Nominal bolt diameter	Tightening torque [N·m]	Torque wrench (Single-function)	Wrench attachment	Coupling size
M5	6	N6SPCK \times 6N \cdot m	25SCK 8mm	05
M6	11	N12SPCK × 11N • m	255CK 10mm	06,08
M8	26	N50SPCK × 26N • m	50SCK 13mm	09,10
M10	51	N100SPCK × 51N • m	100SCK 17mm	12
M12	90	N100SPCK × 90N • m	100SCK 19mm	14

SFF- SS/DS (Clamping Bolt)

Nominal bolt diameter	Tightening torque [N·m]	Torque screwdriver (Preset)	Hexagon bit	Coupling size
M4	3.4	CN500LTDK	SB 3mm	040
M5	7	N10LTDK	SB 4mm	050,060
Nominal bolt diameter	Tightening torque [N·m]	Torque wrenches (Preset)	Hexagonal head	Coupling size
M6	14	N25LCK	25HCK 5mm	060,070,080
M8	34	N50LCK	50HCK 6mm	080,090
Nominal bolt diameter	Tightening torque [N·m]	Torque wrench (Single-function)	Hexagonal head	Coupling size
M10	68	N100SPCK × 68N • m	100HCK 8mm	100,120

SFF- SS/DS (Pressure Bolt)

Nominal bolt diameter	Tightening torque [N·m]	Torque wrench (Single-function)	Wrench attachment	Coupling size
M6	10	N12SPCK × 10N • m	25SCK 10mm	070,080,090,100,120
M8	24	N50SPCK × 24N • m	50SCK 13mm	140

Torque Wrenches

SFM- SS (Clamping Bolt)

Nominal bolt diameter	Tightening torque [N·m]	Torque screwdriver (Preset)	Hexagon bit	Coupling size
M5	7	N10LTDK	SB 4mm	060
Nominal bolt diameter	Tightening torque [N·m]	Torque wrench (Preset)	Hexagonal head	Coupling size
M6	14	N25LCK	25HCK 5mm	060,070,080
M8	34	N50LCK	50HCK 6mm	080,090
Nominal bolt diameter	Tightening torque [N·m]	Torque wrench (Single-function)	Hexagonal head	Coupling size
M10	68	N100SPCK × 68N • m	100HCK 8mm	100,120

SFM- SS (Pressure Bolt)

Nominal bolt diameter	Tightening torque [N·m]	Torque wrench (Single-function)	Wrench attachment	Coupling size
M6	10	N12SPCK × 10N • m	25SCK 10mm	070,080,090,100,120
M8	24	N50SPCK × 24N • m	50SCK 13mm	140

SFH- S/G (Pressure Bolt)

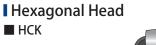
Nominal bolt diameter	Tightening torque [N·m]	Torque wrench (Single-function)	Hexagonal head	Coupling size
M8	34	N50SPCK × 34N • m	50HCK 6mm	150,170
M10	68	N100SPCK × 68N • m	100HCK 8mm	190,210

SFH- S/G (Reamer Bolt)

Nominal bolt diameter	Tightening torque [N·m]	Torque wrench (Single-function)	Wrench attachment	Coupling size
M8	34	N50SPCK × 34N • m	50SCK 13mm	150
M10	68	N100SPCK × 68N • m	100SCK 17mm	170
M12	118	N200SPCK × 118N • m	200SCK 19mm	190
M16	300	N4400SPCK × 300N • m	440SCK 24mm	210,220
Nominal bolt diameter	Tightening torque [N·m]	Torque wrenches (Preset)	Wrench attachment	Coupling size
M20	570	N700LCK	700SCK 30mm	260

■ N-LTDK

I Torque Wrenches (Preset) ■ N-LCK



I Torque Wrench (Single-function) ■ N-SPCK

I Bit ■ SB

Wrench Attachment

MODELS SFC SFS SFF SFM SFH

* Torque screwdriver (wrench)/bit (head) models are those of Nakamura Mfg. Co., Ltd.

Call: 01386 421 005 Fax: 01386 422 441 Email: sales@abssac.co.uk Web: www.abssac.co.uk

ABSSAC Ltd, E1A The Enterprise Centre, Enterprise Way, Evesham, Worcestershire. United Kingdom. WR11 1GS