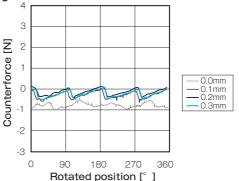
Pin Bushing Couplings

PARAFLEX

Max. nominal torque [N·m]	25
Bore ranges [mm]	ϕ 3 \sim 22
Operating temperature [°C]	$-30 \sim 100$
Backlash	Extremely small size
Driver	Servo motor, stepper motor, induction motor
Application	Chip mounters, electric discharge machines, automated teller machines, winders

Pin bushing Couplings That Keep Shaft Reaction Force from Mounting Misalignment Extremely Low


Pin/bushing style couplings that use aluminum alloy as their primary material. This system makes shaft reaction force due to mounting misalignment extremely small. There is also a damping effect from sliding at the friction surface between the pin and dry metal.

Main Features

I Friction Damping Effect of Pin and Metal Bushing

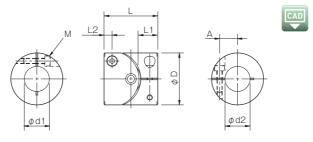
- Counterforce from Parallel Misalignment and Angular Deflection is Extremely Small
- CPU-36-A: Counterforce due to parallel misalignment

Structure and Materials

CPE

CPU

Clamping bolt material: Alloy steel for machine structural use Surface finishing: Solid film lubricant coating


CPE Models

Specifications

	Tor	que	Misalig	nment	Max.			
Model	Nominal [N·m]	Max. [N·m]	Parallel [mm]	Angular [°]	rotation speed [min ⁻¹]	Torsional stiffness [N·m/rad]	Moment of inertia [kg·m²]	Mass [kg]
CPE-19	0.7	0.7 1.4		1	6000	500	0.69×10^{-6}	0.015
CPE-29	2	4	0.2	1	6000	700	5.80×10^{-6}	0.050
CPE-39	5	10	0.2	1	6000	1900	18.50×10^{-6}	0.080

- * Torques for CPE-19 are values when the bore diameter is at least equal to 4 mm. * Max. rotation speed does not take into account dynamic balance.
- * The moment of inertia and mass are measured for the maximum bore diameter.

Dimensions

Model	d1 ·	• d2				12			
Model	Min.	Max.	D	L	L1	L2	М	А	
CPE-19	3	8	19	19.4	6	3	M2.5	6	
CPE-29	6	14	29	30	9.5	4.5	M3	10	
CPE-39	8	20	39	40	12.5	6	M4	14	

^{*} Insert the shaft to at least the dimension L1. (Note that the shaft cannot go all the way through.)

Standard Bore Diameter

Madal							Stan	dard bore d	iameter d	l1, d2 [mr	n]						
Model	3	4	5	6	6.35	7	8	9.525	10	11	12	14	15	16	18	19	20
CPE-19	0	•	•	•	•	•	•										
CPE-29				•	•	•	•	•	•	•	•	•					
CPE-39							•	•	•	•	•	•	•	•	•	•	•

^{*} Torque on the CPE-19 with a bore diameter of 3 mm is limited by holding force in the shaft coupling component, so nominal torque is 0.4 N·m and maximum torque is 0.8 N·m.

How to Place an Order

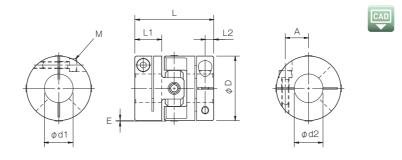
CPE-19-6B-6B Bore diameter: d1 (Small diameter) - d2 (Large diameter) B: Clamping hub

MODELS

CPU

Unit [mm]

 $^{^{\}ast}$ The recommended processing tolerance for paired mounting shafts is the h7 class.


^{*} Bore diameters between the minimum and maximums shown in the dimensions table are compatible, but bore diameters other than those shown in the above table require a separate bore drilling charge.

CPU Models

Specifications

		Misalig	nment				
Model	Rated torque [N·m]	Parallel [mm]	Angular [°]	Max. rotation speed [min ⁻¹]	Torsional stiffness [N·m/rad]	Moment of inertia [kg·m²]	Mass [kg]
CPU-26-A	2.2	0.3	4	4000	600	3.57 × 10 ⁻⁶	0.04
CPU-36-A	10	0.4	4	3500	1350	1.64×10^{-5}	0.09
CPU-46-A	25	0.5	4	3000	1650	5.33×10^{-5}	0.19

Dimensions

Unit [mm]

Model	d1	• d2	D	-		11	L2	М	Δ.
Model	Min.	Max.	D	E	L	L1	LZ	IVI	A
CPU-26-A	6	12	26	0.3	36	12	4	M3	9
CPU-36-A	8	18	36	0.3	44	15	4.75	M4	13
CPU-46-A	10	22	46	0.3	54	18	6.5	M5	16

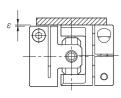
^{*} Insert the shaft to at least the dimension L1. (Note that the shaft cannot go all the way through.) * The recommended processing tolerance for paired mounting shafts is the h7 class.

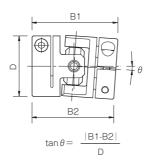
Standard Bore Diameter

Madal							Standar	d bore dia	meter d1,	d2 [mm]						
Model	6	6.35	7	8	9	9.525	10	11	12	14	15	16	18	19	20	22
CPU-26-A	•	•	•	•	•	•	•	•	•							
CPU-36-A				•	•	•	•	•	•	•	•	•	•			
CPU-46-A							•	•	•	•	•	•	•	•	•	•

^{*} Bore diameters between the minimum and maximums shown in the dimensions table are compatible, but bore diameters other than those shown in the above table require a separate bore drilling charge.

How to Place an Order


^{*} Max. rotation speed does not take into account dynamic balance.
* The moment of inertia and mass are measured for the maximum bore diameter.


Items Checked for Design Purposes

I Precautions for Handling

- (1) Couplings are designed for use within an operating temperature range of -30°C to 100°C. PARAFLEX couplings are water and oil resistant, but should not be used in extreme atmospheres.
- (2) Never tighten the clamping bolt (hex-socket-head bolt) prior to inserting the shaft into the coupling.
- (3) Remove any rust, dust, oil or the like from the inner diameter surfaces of the shaft and coupling. Be particularly careful to degrease or otherwise process to fully remove any grease, oil, or the like that is molybdenum disulfide based or contains extremepressure additives that causes fundamental changes in coefficients of friction.
- (4) Mount couplings after checking, by the following sort of method, that differences between coupling centers during operation are within the misalignment shown in the specifications table. CPU models allow angular deflection of up to 4° at this time, but it should be kept within 1.5° if it is important that the coupling be isokinetic. The angular velocity ratio at an angular deflection of 1.5° is 1.0007.

■ Parallel misalignment ■ Angular deflection

- (5) PARAFLEX couplings are not structurally able to absorb axial displacement, so do not place tensile or compressive loads on them during use.
- (6) The length of insertion of the shaft into the coupling should be the dimension L1 on the dimensions table. The shaft cannot go all the way through.
- (7) Tighten clamping bolts (hex-socket-head bolt) to the tightening torques shown below using a calibrated torque wrench.

Model	CPE-19	CPE-29	CPE-39
Bolt with hex socket head for clamping	M2.5	M3	M4
Tightening torque [N·m]	1.0	1.5	3.4
Model	CPU-26-A	CPU-36-A	CPU-46-A
Clamping bolts	M3	M4	M5
Tightening torque [N·m]	1.5	3.4	7.0

(8)Do not use any clamping bolt (hex-socket-head bolt) other than those specified by Miki Pulley. Do not apply oil, grease, fixatives (adhesives) or the like to the clamping bolt (hex-socket-head bolt).

Selection Procedures

(1) Find the torque, Ta, applied to the coupling using the output capacity, P, of the driver and the usage rotation speed, n.

Ta [N·m] = 9550
$$\times \frac{P [kW]}{n[min^{-1}]}$$

(2)Determine the service factor K from the usage and operating conditions, and find the corrected torque, Td, applied to the coupling.

$Td[N\cdot m] = Ta \times K1 \times K2 \times K3 \times K4 \times K5$

■ Service factor based on load property: K1

■ Service factor based on amount of parallel misalignment: K2

			3	
Parallel misalignment [mm]	0	0.1	0.2	
K2	1.0	1.1	1.2	

Service factor based on amount of angular deflection: K3

		,		
Amount of angular deflection [°]	0	0.5	1.0	
К3	1.0	1.06	1.12	

■ Service factor based on operating temperature: K4

			•
Atmospheric temperature [°C]	60 or below	80 or below	100 or below
к/.	1.0	1.4	1.8

Service factor based on rotation speed: K5

Max. rotation	1500	2500	2500	3000	3500	4000	5000	6000
speed	or							
[min ⁻¹]	below							
K5	1.0	1.3	1.7	2.0	2.4	2.7	3.3	

(3) Select the size so that the nominal torque (CPE models) or rated torque (CPU models) Tn is at least equal to the corrected torque, Td.

Tn ≧ Td

(4) Select a size that results in a maximum torque (CPE models) or rated torque (CPU models) Tm that is at least equal to the peak torque, Ts, generated by the driver, follower or both. Maximum torque (CPE models) refers to the maximum amount of torque that can be applied for a set amount of time, considering eight hours of operation per day and up to around ten instances.

$Tm \ge Ts \times K4$

(5) When the required shaft diameter exceeds the maximum bore diameter of the selected size, select a suitable coupling.

MODELS

CPE

CPU

call: 01386 421 005

Fax: 01386 422 441

Email: sales@abssac.co.uk

Web: www.abssac.co.uk

ABSSAC Ltd, E1A The Enterprise Centre, Enterprise Way, Evesham, Worcestershire. United Kingdom. WR11 1GS