			Clutch	i/brake to	rque [N·m]
	0 0.	5 1	.0 1	.5	2.0
102 Models			(0.4~)	2.4)	
CYT Models).4 ~ 1.0)			
112 Models			(0.4~)	2.4)	
	•		•	•	•

Application Automated teller machines, sorters, office equipment, weighing and packaging machinery, printing machinery, bookbinding machinery, optical equipment

Micro Clutches and Micro Brakes for Precise Control of Compact Precision Equipment

These micro clutches and micro brakes are ideal for compact precision equipment where variations in torque and response must be avoided, such as office equipment, communication equipment, and automobiles. In addition to the 102 (clutch) and 112 (brake) models, which share the same basic clutch/brake design, we also provide CYT models (clutches), which can be customized into a wide variety of types to meet customer needs.

Armature type-1 Armature type-2

||

Armature type-3

Electromagnetic-actuated Micro Clutches - Flange-mounted Type

Stator and rotor are combined and directly mounted on stationary parts, such as frames, and fixed in place. These are short in the axial direction and can use space near walls effectively. Select the armature according to the coupling type used (through-shaft, butt shaft, etc.).

Clutch torque	[N·m]	0.4~2.4
Operating temperature	[℃]	$-10 \sim +40$
Backlash		Zero

RoHS-compliant

Electromagnetic-actuated Micro Clutches - Bearing-mounted Type

These integrate the stator and rotor, which are held to the stationary parts of the machine by a drive pin arm; the rotor is locked to the rotation shaft by a set screw. They are designed to be relatively easy to mount, reducing the processing work required for mounting. Select the armature according to the coupling type used (through-shaft, butt shaft, etc.).

Clutch torque	[N·m]	$0.4 \sim 2.4$	
Operating temperature	[°C]	$-10 \sim +40$	
Backlash		Zero	

RoHS-compliant

CYT Electromagnetic-actuated Micro Clutches - Custom Type

The CYT models are the basic building blocks for customized microclutches. The basic model is bearing mounted. Two types are available for different shaft rotation speeds: a dry metal type and a ball bearing type. Armature type-3 is standard, but many customizations are possible.

Clutch torque	[N·m]	$0.4 \sim 1.0$	
Operating temperature	[℃]	$-10 \sim +40$	
Backlash		Zero	

RoHS-compliant

112 Electromagnetic-actuated Micro Brakes

RoHS-compliant (except size #02)

Brakes are used to brake and hold rotating bodies. The flange of the stator is locked securely to a strong stationary part. Select an armature that factors in the mounting space available.

Brake torque	[N·m]	0.4 ~ 2.4	
Operating temperature	[℃]	$-10 \sim +40$	
Backlash		Zero	

Mounting and CYT Customization Examples

Flange-mounting example with 102

The stator is directly mounted on a stationary part, such as a frame, by a mounting flange, and fixed in place. The rotor is locked to the rotation shaft using a key. The stator and rotor are combined via a narrow air gap that serves as part of the magnetic circuit to form a magnetic pole.

Dry-metal type mounting example with CYT

The stator is integrated with the rotor via dry metal, and held to the stationary parts of the machine by a drive pin arm. The rotor is locked to the rotation shaft using a set screw. The stator and rotor form a magnetic pole via the dry metal.

Bearing-mounting example with 102.

The stator is integrated with the rotor via a bearing and held to the stationary parts of the machine by a drive pin arm. The rotor is locked to the rotation shaft using a set screw. The stator and rotor form a magnetic pole via the bearing (ferrous oil-impregnated metal).

Butt shaft mounting example with 102

The stator is mounted on the shaft via a bearing and held to the stationary parts of the machine by a drive pin arm. The stator and rotor are combined via a narrow air gap that serves as part of the

magnetic circuit to form a magnetic pole.

Ball-bearing type mounting example with CYT

In designs that use butt shafts, the two shafts can be reliably centered using fitting flanges, as shown in the figure.

Dry-metal type embedding example with CYT

We design to your requirements using timing pulleys, gears and the like mounted on armature type-3.

Mounting and CYT Customization Examples

Armature type-3 mounting example with 112

Armature type-3 is used by directly mounting it to a transmission element such as a V-pulley or to a rotating body that stops inertial force. The shaft of the brake part requires no processing. The shaft diameter may also be determined freely. Air gap "a" can be set easily using collars and shims. Corrections are easily accomplished by adding or removing shims.

Armature type-2 mounting example with 112

Armature type-2 has the smallest mounting-space footprint of any of the armatures, so overhang is not a concern even when a sprocket or the like is mounted on the brake tip.

Air gap "a" can be set easily using collars and shims.

Corrections are easily accomplished by adding or removing shims.

Example of the combination of clutches and brakes

This example uses a two-step speed-change mechanism combining two clutches and a brake.

Example of the combination of clutches and brakes

Shaft drive is both forward and reverse in combination with a clutch in this example. Start and stop freely by mounting brakes on each shaft.

ELECTROMAGNETIC CLUTCHES & BRAKES

& REDUCERS

LINEAR SHAFT DRIVES

TORQUE LIMITE

ROSTA

SERIES

ELECTROMAGNET	ELECTROMAGNETIC- ACTUATED MICRO CLUTCHES & BRAKES
IIC-ACTUATED CLU	ELECTROMAGNETIC- ACTUATED CLUTCHES & BRAKES
ITCHES & BRAKES	ELECTROMAGNETIC CLUTCH & BRAKE UNITS

SPRING-ACTUATED BRAKE

ELECTROMAGNETIC TOOTH CLUTCHES

BRAKE MOTORS

POWER SUPPLIES

MODELS

102

СҮТ 112

Armature type-1 mounting example on vertical shaft with 112

Since there is no restriction on mounting direction, there is no running torque or abnormal wear even when mounted on vertical shafts. It is easy to set air gap a: simply move armature type-1 and lock it in place with a set screw.

102-Types Electromagnetic Micro Clutches - Flange-mounted Type

Specifications

		Dynamic		Coil (a	t 20°C)	He		Rotating part mo	ment of inertia J		Total work			-	
Model	Size	friction torque Td [N·m]	Voltage [V]	Wattage [W]	Current [A]	Resistance [Ω]	at resistance class	Max. rotation speed [min ⁻¹]	Armature [kg·m²]	Rotor [kg·m²]	Allowable engaging energy Eea <i>l</i> [J]	performed until read- justment of the air gap ET [J]	Armature pull-in time t₁ [s]	Torque rise time t _P [s]	Torque extinction time ta [s]	Mass [kg]
102-02-13								10000	6.75 × 10 ⁻⁷							0.075
102-02-15	02	0.4	DC24	6	0.25	96	В	500	1.00×10^{-6}	$2.45 imes 10^{-6}$	1500	$2 imes 10^{6}$	0.009	0.019	0.017	0.081
102-02-11								10000	1.00×10^{-6}							0.079
102-03-13								10000	1.30×10^{-6}							0.096
102-03-15	03	0.6	DC24	6	0.25	96	В	500	1.95×10^{-6}	$3.25 imes 10^{-6}$	2300	$3 imes10^{6}$	0.009	0.022	0.020	0.105
102-03-11								10000	1.95 × 10 ⁻⁶							0.103
102-04-13								10000	$4.38 imes 10^{-6}$							0.178
102-04-15	04	1.2	DC24	8	0.33	72	В	500	$6.15 imes 10^{-6}$	1.41 × 10 ⁻⁵	4500	6 × 10 ⁶	0.011	0.028	0.030	0.195
102-04-11								10000	$6.15 imes 10^{-6}$							0.191
102-05-13								10000	9.08 × 10 ⁻⁶							0.310
102-05-15	05	2.4	DC24	10	0.42	58	В	500	1.38 × 10 ⁻⁵	3.15 × 10 ⁻⁵	9000	9 × 10 ⁶	0.012	0.031	0.040	0.335
102-05-11								10000	1.38 × 10 ⁻⁵							0.325

The dynamic friction torque, Td, is measured at a relative speed of 100 min⁻¹.
 The moment of inertia of a rotating body and mass are measured for the maximum bore diameter

* Keep supply voltage fluctuation to within 10% of coil voltage.

Dimensions (102- 🗌 -13)

(For direct mounting)

S	Radial direction dimensions														Axial	directio	n dimer	sions				
ze	A 1	A ₂	A ₃	A 4	C 1	C ₂	C3	C4	Cs	S	V 1	V_2	V_3	Z	Н	J	К	L	Р	М	а	Х
02	31	28	19.5	10.5	39	33.5	11.4	11	8	-	2-2.1	2-5.3	2-4	4-90°	18	16.5	1.5	20.5	5	1.1	0.1	0.8
03	34	32	23	12.5	45	38	13.6	13	10	33	3-2.6	3-6	3-4.5	6-60°	22.2	20.2	2	24.5	6.7	1.3	0.15	1.2
04	43	40	30	18.5	54	47	20	19	15.5	41	3-3.1	3-6	3-5	6-60°	25.4	23.4	2	28.2	7	1.3	0.15	1.5
05	54	50	38	25.5	65	58	27.2	26	22	51	3-3.1	3-6.5	3-5.5	6-60°	28.1	26.1	2	31.3	8.2	1.5	0.2	1.5

* Size 02 is a rounded flange

* The rotor of size 02 has no keyway. Lock it in place by press-fitting it onto the shaft or the like.

Size

102-03-13 24V 6DIN

Rotor bore diameter (dimensional symbol d)

Keyway standards DIN: Compliant with the new JIS standards JIS: Compliant with the old JIS standards

*Models for which there are no keyway standards (models marked by [-]) on the Shaft Bore Dimensions table need not be marked with a keyway standards designation. Products with standards marked by diagonal lines are not set as standard products.

Dimensions (102- 🗌 -15)

(For through-shafts)

Radial direction dimensions

C₂

33.5

38

47

58

C₃

11.4

13.6

20

27.2

Rotor bore diameter (dimensional symbol d1)

C₄

11

13

19

26

102-03-15 24V R6DIN A6

C₅

8

10

15.5

22

s

33

41

51

н

18

22.2

25.4

28.1

J

16.5

20.2

23.4

26.1

к

1.5

2

2

2

	Shaft bore dir									
Size	d1	d ₂	Models con the new JIS	mpliant wi						
	H7	H7	b P9	t						
02	5	5	_	_						
03	6	6	$2 \ {}^{- 0.006}_{- 0.031}$	0.8 + 0.0						
•	8	8	$2 \begin{array}{c} - 0.006 \\ - 0.031 \end{array}$	0.8 + 0.0						

Axial direction dimensions

L

22.4

26.5

30.8

34.3

05

L

27.5

34.5

40.2

43.3

* The armature type-5 bore d2 is a straight bore.

м

1.1

1.3

1.3

1.5

10 10 3 $^{-0.006}_{-0.031}$ 1.2 $^{+0.3}_{0}$

N₁

4.8

7.8

9.1

8.8

Unit [mm]

а

0.1

0.15

0.15

0.2

Unit [mm]

dels compliant with ne old JIS standards **b** E9

 $^{+0.050}_{+0.020}$ 1.5 $^{+0.5}_{-0.50}$

 $^{+0.050}_{+0.020}$ 1.5 $^{+0.5}_{-0.020}$

 $^{+\,0.050}_{+\,0.020}$ 2 $^{+\,0.5}_{0}$

 $4 \begin{array}{c} + 0.050 \\ + 0.020 \end{array}$ 1.5 $\begin{array}{c} + 0.5 \\ 0 \end{array}$

Unit [mm]

ore dimensions

+ 0.3

10 10 3 $^{-0.006}_{-0.031}$ 1.2 $^{+0.3}_{0}$ 4 $^{+0.050}_{+0.020}$ 1.5 $^{+0.5}_{0}$

 $15 \hspace{.1in} 15 \hspace{.1in} 5 \hspace{.1in} {\overset{-0.012}{_{-0.042}}} \hspace{.1in} 2 \hspace{.1in} {\overset{+0.5}{_{0}}} \hspace{.1in} 5 \hspace{.1in} {\overset{+0.050}{_{+0.020}}} \hspace{.1in} 2 \hspace{.1in} {\overset{+0.5}{_{0}}}$

Р

5

6.7

7

8.2

liant with Models compliant with the old JIS standards **b** E9

EI ECTROMAGNET	ELECTROMAGNETIC- ACTUATED MICRO CLUTCHES & BRAKES	
IIC-ACTIINTED (II	ELECTROMAGNETIC- ACTUATED CLUTCHES & BRAKES	
TTTUES & RDAVES	ELECTROMAGNETIC CLUTCH & BRAKE UNITS	
SI Bi	PRING-ACTUATED RAKE	
El T(LECTROMAGNETIC OOTH CLUTCHES	
-		

BRAKE MOTORS

Armature bore diameter (dimensional symbol d2) Keyway standards DIN: Compliant with the new JIS standards JIS: Compliant with the old JIS standards

*Models for which there are no keyway standards (models marked by [-]) on the Shaft Bore Dimensions table need not be marked with a keyway standards designation. Products with standards marked by diagonal lines are not set as standard products.

CAD

Dimensions (102- 🗌 -11)

(For butt shafts)

Size

02 31

03 34

04

05 54

A₁

43

* Size 02 is a rounded flange

A₂

28

32

40

50

How to Place an Order

A₃

13

14

18

28

C₁

39

45

54

65

* The rotor of size 02 has no keyway. Lock it in place by press-fitting it onto the shaft or the like

Size

Radial direction dimens

C₃

11.4

13.6

20

27.2

 C_2

33.5

38

47

58

		Shaft bore dimensions										
Size	d ₁	d ₂	Models con the new JIS	Models of the old								
	H7	H7	b P9	t	b E9							
02	5	5	_	_								
03	6	6	$2 \ \ {}^{-\ 0.006}_{-\ 0.031}$	0.8 ^{+ 0.3}								
0/	8	8	$2 \ {}^{- 0.006}_{- 0.031}$	$0.8 \ {}^{+ \ 0.3}_{0}$	/							
04	10	10	$3 \ {}^{- 0.006}_{- 0.031}$	$1.2 {}^{+ 0.3}_{0}$	4 + 0.0							
05	10	10	$3 \ {}^{-\ 0.006}_{-\ 0.031}$	$1.2 {}^{+ 0.3}_{0}$	4 + 0.0 + 0.0							
05	15	15	$5 \ {}^{- 0.012}_{- 0.042}$	$2 {}^{+0.5}_{0}$	5 +0.0							

М

1.1

1.3

1.3

1.5

102 Unit [mm] Axial direction dimensi CYT Ρ U Т а 112 5 7 2.5 0.1 6.7 10 4 0.15

5

5

0.15

0.2

12

12

* Size 02 is a rounded flange

 \mathbf{A}_1

34

 \mathbf{A}_2

28

32

40

50

 A_3

9.5

12

17

24

Size

02 31

03

04 43

05 54

* The rotor of size 02 has no keyway. Lock it in place by press-fitting it onto the shaft or the like.

C₁

39

45

54

65

How to Place an 102-03-11 24V R6DIN A6DIN Order Size –

 C_4

11

13

19

26

C₅

8

10

15.5

22

s

33

41

51

m

М3

2-M3

2-M3

2-M4

н

18

22.2

25.4

28.1

J

16.5

20.2

23.4

26.1

κ

1.5

2

2

2

 L_1

27.5

34.5

40.2

43.3

L₂

22.5

26.5

30.8

34.3

Rotor bore diameter (dimensional symbol d1) -

Keyway standards DIN: Compliant with the new JIS standards JIS: Compliant with the old JIS standards

Armature bore diameter (dimensional symbol d2)

7

8.2

Keyway standards DIN: Compliant with the new JIS standards JIS: Compliant with the old JIS standards

*Models for which there are no keyway standards (models marked by [-]) on the Shaft Bore Dimensions table need not be marked with a keyway standards designation. Products with standards marked by diagonal lines are not set as standard products.

ELECTROMAGNETIC **CLUTCHES & BRAKES**

POWER SUPPLIES

MODELS

102--3 **Types** Electromagnetic Micro Clutches - Bearing-mounted Type

Specifications

		Dynamic friction torque Td [N·m]	Coil (at 20°C)			ارة Max.		Rotating part moment of inertia J		Allowable	Total work per- formed until	Armature	Torque	Torque		
Model	Size		Voltage [V]	Wattage [W]	Current [A]	Resistance [Ω]	Heat istance class	rotation speed [min ⁻¹]	Armature [kg·m²]	Rotor [kg⋅m²]	engaging energy Eea ℓ [J]	readjustment of the air gap FT []]	pull-in time ta [s]	rise time t _P [s]	time td [s]	Mass [kg]
102-02-33									$6.75 imes 10^{-7}$							0.076
102-02-35	02	0.4	DC24	6	0.25	96	В	500	$1.00 imes 10^{-6}$	2.75×10^{-6}	1500	$2 imes 10^{6}$	0.009	0.019	0.017	0.082
102-02-31									$1.00 imes 10^{-6}$							0.080
102-03-33									$1.30 imes 10^{-6}$							0.101
102-03-35	03	0.6	DC24	6	0.25	96	В	500	$1.95 imes 10^{-6}$	$4.08\times10^{_{-6}}$	2300	$3 imes 10^{6}$	0.009	0.022	0.020	0.110
102-03-31									$1.95 imes 10^{-6}$							0.108
102-04-33									$4.38 imes 10^{-6}$							0.183
102-04-35	04	1.2	DC24	8	0.33	72	В	500	$6.15 imes 10^{-6}$	$1.44 imes 10^{-5}$	4500	$6 imes 10^{6}$	0.011	0.028	0.030	0.200
102-04-31									$6.15 imes 10^{-6}$							0.196
102-05-33									$9.08\times10^{_{-6}}$							0.321
102-05-35	05	2.4	DC24	10	0.42	58	В	500	$1.38 imes 10^{-5}$	$2.90 imes 10^{-5}$	9000	9 × 10 ⁶	0.012	0.031	0.040	0.346
102-05-31									$1.38 imes 10^{-5}$							0.336

* The dynamic friction torque, T_d, is measured at a relative speed of 100 min⁻¹.
 * The moment of inertia of a rotating body and mass are measured for the maximum bore diameter.
 * Keep supply voltage fluctuation to within 10% of coil voltage.

Dimensions (102- 🗌 -33)

(For direct mounting)

		Unit [mm]
Sizo	Shaft bore dimensions	
Size	d н7	
02	5	
03	6	
	8	
04	10	
05	10	
05	15	

Unit [mm]

S	Radial direction dimensions								Axial direction dimensions													
ze	A ₁	A ₂	A ₃	A ₄	F	V ₁	V_2	V ₃	G1	G ₂	Y ₁	Y ₂	Z	m	Н	R	L ₁	L ₂	Р	Ν	т	а
02	31	28	19.5	10.5	14	2-2.1	2-5.3	2-4	16.8	20	3.1	8	4-90°	2-M3	19.5	1.6	25.9	23.5	5	0.8	2.5	0.1
03	34	32	23	12.5	16	3-2.6	3-6	3-4.5	20	23	3.1	8	6-60°	2-M3	21.9	1.6	28.5	26.2	4.7	1.2	2.3	0.15
04	43	40	30	18.5	22	3-3.1	3-6	3-5	23	26	3.1	8	6-60°	2-M4	25.1	1.6	33.2	30.4	5	1.5	2.8	0.15
05	54	50	38	25.5	30	3-3.1	3-6.5	3-5.5	28	31	3.1	8	6-60°	2-M5	27.9	1.6	37.3	34.1	6	1.5	3.3	0.2
05	54	50	38	25.5	30	3-3.1	3-6.5	3-5.5	28	31	3.1	8	6-60°	2-M5	27.9	1.6	37.3	34.1	6	1.5	3.3	0

How to Place an	102
Order	Size –

2-<u>03</u>-33 24V <u>6</u>

-Rotor bore diameter (dimensional symbol d)

Dimensions (102- 🗌 -35)

(For through-shafts)

Radial direction dimensions

G1

16.8

20

23

28

Size

G2

20

23

26

31

Y1

3.1

3.1

3.1

3.1

Y₂

8

8

8

8

m

2-M3

2-M3

2-M4

2-M5

1

		Unit [mm]
S	Shaft bore	dimensions
ze	d 1 н7	d ₂ H7
)2	5	5
)3	б	6
14	8	8
4	10	10
15	10	10
10	15	15

Axial direction dimensions

L2

27.9

30.5

35.8

40.3

Ρ

5

4.7

5

6

Ν

4.8

7.8

9.1

8.8

Т

2.5

2.3

2.8

3.3

а

0.1

0.15

0.15

0.2

Unit [mm]

SERIES

ELECTROMAGNET	ELECTROMAGNETIC- ACTUATED MICRO CLUTCHES & BRAKES
FIC-ACTUATED CLU	ELECTROMAGNETIC- ACTUATED CLUTCHES & BRAKES
JTCHES & BRAKES	ELECTROMAGNETIC CLUTCH & BRAKE UNITS
_	

RING-ACTUATED BRAKE

ELECTROMAGNETIC TOOTH CLUTCHES

OTORS

UPPLIES

t [mm]	

1.5	
2 + 0.5	
	MODELS
	102
Unit [mm]	СҮТ

112

BRAKE M
POWER S

102-03-35 24V R6 A6 Armature bore diameter (dimensional symbol d2) -Rotor bore diameter (dimensional symbol d1)

H1

23.5

26.2

30.4

34.1

H2

19.5

21.9

25.1

27.9

R

1.6

1.6

1.6

1.6

L1

33

38.5

45.2

49.3

Dimensions (102- 🗌 - 31)

A2

28

32

40

50

How to Place an

Order

Аз

13

14

18

28

F

14

16

22

30

(For butt shafts)

Size

02

03

04

05

A1

31

34

43

54

Radial direction dimensions

G₁

16.8

Size

 G_2

20

	b
	+
-	ΨΨ.

 H_1

23.5

H₂

19.5

Y1		
b l l	Size	d 1 Н7
	02	5
	03	6
	~ (8
\$Y\$	04	10
	05	10
	05	15
а а ШШ		

R

1.6

 L_1

33

					Unit [mm]			
		Shaf	t bore dime	nsions				
d1	d2	Models con the new JIS	pliant with standards	Models compliant with the old JIS standards				
H7	H7	b P9	t	b E9	t			
5	5	-	-					
6	6	$2 \begin{array}{c} -0.006 \\ -0.031 \end{array}$	0.8 + 0.3					
8	8	$2 \ \ {}^{- 0.006}_{- 0.031}$	0.8 + 0.3					
10	10	$3 \begin{array}{c} -0.006 \\ -0.031 \end{array}$	$1.2^{+0.3}_{0}$	$4 \ ^{+ \ 0.050}_{+ \ 0.020}$	1.5 ^{+ 0.5}			
10	10	$3 \begin{array}{c} -0.006 \\ -0.031 \end{array}$	$1.2 {}^{+ 0.3}_{0}$	$4 \ ^{+ \ 0.050}_{+ \ 0.020}$	1.5 + 0.5			
15	15	$5 \begin{array}{c} -0.012 \\ -0.042 \end{array}$	2 + 0.5	$5 \ ^{+ \ 0.050}_{+ \ 0.020}$	2 + 0.5			

12 20 23 3.1 8 2-M3 2-M3 21.9 38.5 30.5 4.7 16 26.2 1.6 17 22 23 3.1 8 2-M4 2-M3 30.4 25.1 45.2 35.8 5 26 1.6 30 28 3.1 8 27.9 40.3 24 31 2-M5 2-M4 34.1 1.6 49.3 6

 \mathbf{m}_2

М3

How to Place an Order

A₂

28

32

40

50

 A_3

9.5

F

14

Size

02

03 34

04 43

05 54

A₁

31

102-03-31 24V R6 A6DIN

 \mathbf{Y}_2

8

 \mathbf{m}_1

2-M3

Rotor bore diameter (dimensional symbol d1)

 \mathbf{Y}_1

3.1

Keyway standards DIN: Compliant with the new JIS standards JIS: Compliant with the old JIS standards

Armature bore diameter (dimensional symbol d2)

Axial direction dimensions

Ρ

5

U

7

10

12

12

T₁

2.5

2.3

2.8

3.3

 T_2

2.5

4

5

5

а

0.1

0.15

0.15

0.2

 L_2

27.9

*Models for which there are no keyway standards (models marked by [-]) on the Shaft Bore Dimensions table need not be marked with a keyway standards designation. Products with standards marked by diagonal lines are not set as standard products.

ELECTROMAGNETIC

CLUTCHES & BRAKES

CYT Models Electromagnetic Micro Clutches - Bearing-mounted Type

Specif	Specifications															
		Dynamic		Coil (at 20°C)			Heat	Max.	Rotating part moment of inertia		Allowable	Total	Armature	Torque	Torque	
Model	Size	friction torque Ta [N·m]	Voltage [V]	Wattage [W]	Current [A]	Resistance [Ω]	resistance class	rotation speed [min ⁻¹]	engagi Armature Rotor energ [kg·m²] [kg·m²] Eeaℓ[.		engaging energy Eeal [J]	work ET [J]	pull-in time ta [s]	rise time t _P [s]	extinction time ta [s]	Mass [kg]
CYT-025-33B	025	0.4	DC24	4.5	0.188	128	В	3600	1.00×10^{-6}	1.43×10^{-6}	800	$1.0 imes 10^6$	0.014	0.028	0.030	0.07
CYT-03-33B CYT-03-33M	03	0.5	DC24	5.5	0.23	105	В	3600 500	1.30 × 10 ⁻⁶	1.85×10^{-6} 1.90×10^{-6}	900	1.5 × 10 ⁶	0.015	0.030	0.040	0.13 0.11
CYT-04-33B CYT-04-33M	04	1.0	DC24	5.9	0.25	98	В	3600 500	5.15 × 10 ⁻⁶	1.00×10^{-5} 1.05×10^{-5}	1900	2.0 × 10 ⁶	0.030	0.040	0.040	0.26 0.23

The dynamic friction torque, Ta, is measured at a relative speed of 100 min⁻¹.
 The rotating part moment of inertia and mass are measured for the maximum bore diameter.

* Keep supply voltage fluctuation to within 10% of coil voltage. Also, be careful that energization does not exceed 50%.

Dimensions (CYT- - -33M) 11 (Lead wire positions) 45 Н а 8±0.2 m F 3.1 (Positioned 3- Ø V2 -φ <at 120°) ů ō ¢ A3±0.05 φA4 ϕA_2 φĂ Δ 3-¢√₃ 6.60 Back clearance dimensions for the rivet * N 200 0 head during mounting are marked with [*]. Unit [mm] Radial direction dimensions Axial direction dimensions Size **V**1 V_2 Ν d \mathbf{A}_1 \mathbf{A}_2 A₃ **A**₄ F V_{3} G \mathbf{G}_2 m Н R L₁ L_2 Ρ Т а 6 0.2 ± 0.05 23 12.5 14 3-2.6 3-5.5 3-6 23 M3 21 1.2 28.6 26.2 3 2.3 03 34 32 20 13

27.5

25

M4

25.3

1.2

35.1

32.4

17.5

3.5

3

0.2 + 0.05

18.5 * Dimensional symbols N and V3 indicate the clearance dimensions for the rivet head during mounting.

18

8 8

10

45

42

30

04

How to Place an CYT-03-33M 24V 6 Order - Rotor bore diameter (dimensional symbol d) Size

3-3.1

3-6

3-6

Dimensions (CYT-025-33B)

How to Place an Order

CYT-025-33B 24V 6

Dimensions (CYT- 🗌 -33B)

																									Unit [mm]
Sizo	Nominal		Radial direction dimensions									Axial direction dimensions							Shaft bore dimensions						
Size	diameter	A_1	A ₂	A_3	A ₄	F	V 1	V_2	V_3	G1	G_2	н	R	L ₁	L ₂	L_3	L_4	Р	Ν	т	а	\mathbf{d}_2	d 1	b	t
00	6	34	32	23	12.5	15	3-2.6	3-5.5	3-6	20	23	21	1.2	22.2	19.8	10	11.3	13	3	1.5	$0.2 \pm 0.05 $	6	6	$2 \ ^{+ \ 0.030}_{+ \ 0.005}$	0.8 + 0.3
03	8	34	32	23	12.5	16	3-2.6	3-5.5	3-6	20	23	21	1.2	22.2	19.8	10	11.3	13	3	1.5	$0.2 \pm 0.05 $	8	8	$2 \ ^{+ \ 0.030}_{+ \ 0.005}$	0.8 + 0.3
	8	45	42	30	18.5	19	3-3.1	3-6	3-6	25	28	25.3	1.2	26.8	24.1	12	13	17.5	3.5	0.9	$0.2 \ ^{+\ 0.05}_{-\ 0.1}$	8	8	$2 \ ^{+ \ 0.030}_{+ \ 0.005}$	0.8 + 0.3
04	10	45	42	30	18.5	19	3-3.1	3-6	3-6	25	28	25.3	1.2	26.8	24.1	14	11	17.5	3.5	0.9	$0.2 \ ^{+ \ 0.05}_{- \ 0.1}$	10	10	3 + 0.025	1.2 ^{+ 0.3}

* Dimensional symbols N and V3 indicate the clearance dimensions for the rivet head during mounting.

COUPLINGS

ETP BUSHING

ELECTROMAGNETIC CLUTCHES & BRAKES	
SPEED CHANGERS & REDUCERS	
INVERTERS	
LINEAR SHAFT DRIVES	
TORQUE LIMITERS	
DOCTA	

SERIES

	ELECTROMAGNETIC- ACTUATED MICRO CLUTCHES & BRAKES							
	ELECTROMAGNETIC- ACTUATED CLUTCHES & BRAKES							
TCUEC 0 DAAVEC	ELECTROMAGNETIC CLUTCH & BRAKE UNITS							
SI BI	SPRING-ACTUATED BRAKE							

ELECTROMAGNETIC TOOTH CLUTCHES

BRAKE MOTORS

POWER SUPPLIES

MODEL	S			
102				
СҮТ		 		
112		 	 	

112 Models Electromagnetic Micro Brakes

Specifications

		Dynamic friction		Coil (at	t 20℃)		Heat	Max.	Armature	Allowable	Total work	Armature	Torque	Torque	
Model	Size	torque Td [N·m]	Voltage [V]	oltage Wattage Currer [V] [W] [A]		Resistance [Ω]	resistance class	speed [min ⁻¹]	moment of inertia J [kg·m²]	engaging energy E _{ea} ℓ [J]	Readjustment of the air gap ET [J]	pull-in time ta [s]	time tp[s]	decaying time td [s]	Mass [kg]
112-02-13									6.75 × 10 ⁻⁷						0.053
112-02-12	02	0.4	DC24	6	0.25	96	В	10000	1.00×10^{-6}	1500	$2 imes 10^6$	0.004	0.010	0.010	0.057
112-02-11									1.00×10^{-6}						0.057
112-03-13									1.30×10^{-6}						0.072
112-03-12	03	0.6	DC24	6	0.25	96	В	10000	1.95×10^{-6}	2300	3×10^{6}	0.005	0.012	0.008	0.079
112-03-11									1.95×10^{-6}						0.079
112-04-13									4.38×10^{-6}						0.118
112-04-12	04	1.2	DC24	8	0.33	72	В	10000	6.15 × 10 ⁻⁶	4500	$6 imes 10^{6}$	0.007	0.016	0.010	0.131
112-04-11									6.15 × 10 ⁻⁶						0.131
112-05-13									9.08 × 10 ⁻⁶						0.200
112-05-12	05	2.4	DC24	10	0.42	58	В	10000	1.38×10^{-5}	9000	9 × 10 ⁶	0.010	0.023	0.012	0.215
112-05-11									1.38 × 10 ⁻⁵						0.215

* The dynamic friction torque, T_d, is measured at a relative speed of 100 min⁻¹.
 * The rotating part moment of inertia and mass are measured for the maximum bore diameter.
 * Keep supply voltage fluctuation to within 10% of coil voltage.

Dimensions (112- 🗌 -13)

Unit [mm]

S		Radial direction dimensions													Axial direction dimensions							
ze	A ₁	A ₂	A ₃	C ₁	C ₂	C ₃	C ₄	S	V ₁	V ₂	V_3	Z	Н	К	J ₁	J_2	L	Р	Х	а		
02	28	19.5	10.5	39	33.5	11.4	11	-	2-2.1	2-5.3	2-4	4-90°	13.7	1.5	2.6	1.3	16.1	5	0.8	0.1		
03	32	23	12.5	45	38	13.6	13	33	3-2.6	3-6	3-4.5	6-60°	17	2	3.3	1.3	19.3	6.7	1.2	0.15		
04	40	30	18.5	54	47	20	19	41	3-3.1	3-6	3-5	6-60°	20	2	3.3	1.3	22.8	7	1.6	0.15		
05	50	38	25.5	65	58	27.2	26	51	3-3.1	3-6.5	3-5.5	6-60°	22	2	3.5	1.5	25.2	8	1.6	0.2		
Size 02	ize 02 is a rounded flange.																					

How to Place an	112-03-13 24V
Order	Siza
	Size

Dimensions (112- 🗌 - 12)

_
3

CAD

	φ Φ Υ		///@I@///
ر -	~	Щ.	4

		Unit [mm]							
t bore dimensions									
iant with Models compliant with andards the old JIS standards									
	h an								

ize	d	the new JIS	standards	the old JIS standards						
	H7	b P9	t	b E9	t					
02	5	-	-							
03	6	$2 \begin{array}{c} - \ 0.006 \\ - \ 0.031 \end{array}$	0.8 + 0.3 0							
• /	8	$2 \begin{array}{c} - 0.006 \\ - 0.031 \end{array}$	0.8 + 0.3							
04	10	$3 \ {}^{-\ 0.006}_{-\ 0.031}$	$1.2 {}^{+0.3}_{0}$	$4 ^{+0.050}_{+0.020}$	1.5 + 0.5					
05	10	$3 \ {}^{- 0.006}_{- 0.031}$	$1.2 {}^{+0.3}_{0}$	$\begin{array}{c} 4 & {}^{+} \begin{array}{c} 0.050 \\ {}^{+} 0.020 \end{array}$	1.5 + 0.5					
05	15	5 - 0.012	2 + 0.5	5 + 0.050 + 0.020	$2^{+0.5}_{0}$					

Shat

		1	1											Unit [mm]
S		R	adial directio	on dimension	IS		Axial direction dimensions							
ze	A ₁	C 1	C ₂	C ₃	C ₄	S	н	К	J ₁	J ₂	L	Р	U	а
02	28	39	33.5	11.4	11	_	13.7	1.5	2.6	1.3	18.1	5	7	0.1
03	32	45	38	13.6	13	33	17	2	3.3	1.3	21.3	6.7	10	0.15
04	40	54	47	20	19	41	20	2	3.3	1.3	25.5	7	12	0.15
05	50	65	58	27.2	26	51	22	2	3.5	1.5	28.2	8	12	0.2

* Size 02 is a rounded flange.
 * The armature hub of size 02 has no keyway. Lock it in place by press-fitting it onto the shaft or the like.

How to Place an Order

Keyway standards DIN: Compliant with the new JIS standards JIS: Compliant with the old JIS standards

Armature bore diameter (dimensional symbol d)

* Models for which there are no keyway standards (models marked by [-]) on the Shaft Bore Dimensions table need not be marked with a keyway standards designation. Products with standards marked by diagonal lines are not set as standard products.

Dimensions (112- 🗌 -11)

	Shaft bore dimensions											
Size	d	Models con the new JIS	pliant with standards	Models co with the old J	ompliant IIS standards							
	H7	b P9	t	b E9	t							
02	5	-	-									
03	6	$2 \begin{array}{c} -0.006 \\ -0.031 \end{array}$	0.8 + 0.3 0									
0/	8	$2 \ {}^{- 0.006}_{- 0.031}$	0.8 + 0.3 0									
04	10	$3 \ {}^{- 0.006}_{- 0.031}$	$1.2 {}^{+0.3}_{0}$	4 + 0.050 + 0.020	1.5 + 0.5							
05	10	$3 \ {}^{- 0.006}_{- 0.031}$	$1.2 {}^{+ 0.3}_{0}$	$4 \ ^{+ \ 0.050}_{+ \ 0.020}$	1.5 + 0.5							
05	15	$5 \begin{array}{c} -0.012 \\ -0.042 \end{array}$	2 + 0.5	$5 \ ^{+ \ 0.050}_{+ \ 0.020}$	2 + 0.5							

Unit [mm]

Unit [mm]

		Shart bore unitensions											
Size	d	Models con the new JIS	pliant with Standards	Models co with the old J	ompliant IS standards								
	H7	b P9	t	b E9	t								
02	5	-	-										
03	6	$2 \begin{array}{c} - \ 0.006 \\ - \ 0.031 \end{array}$	0.8 + 0.3 0										
0/	8	$2 \ {}^{- 0.006}_{- 0.031}$	0.8 + 0.3 0										
04	10	$3 \ {}^{- 0.006}_{- 0.031}$	$1.2 {}^{+ 0.3}_{0}$	4 + 0.050 + 0.020	20050 1.5 +0.5 20050 1.5 +0.5 20050 1.5 +0.5 20050 1.5 +0.5 20050 2 +0.5								
05	10	$3 \ {}^{- 0.006}_{- 0.031}$	$1.2 {}^{+ 0.3}_{0}$	$4 \ ^{+ \ 0.050}_{+ \ 0.020}$	1.5 + 0.5								
05	15	5 - 0.012	2 + 0.5	5 + 0.050	$2^{+0.5}$								

MODELS 102 СҮТ 112

S			nau	anunecuo	Jii uimens	IONS						AXI	arunectio	numensi	ons									
ze	A 1	A ₂	C ₁	C ₂	C ₃	C ₄	S	m	Н	К	J_1	J_2	L ₁	L ₂	Р	U	т	а						
02	28	9.5	39	33.5	11.4	11	-	M3	13.7	1.5	2.6	1.3	23.1	18.1	5	7	2.5	0.1						
03	32	12	45	38	13.6	13	33	2-M3	17	2	3.3	1.3	29.3	21.3	6.7	10	4	0.15						
04	40	17	54	47	20	19	41	2-M3	20	2	3.3	1.3	34.8	25.5	7	12	5	0.15						
05	50	24	65	58	27.2	26	51	2-M4	22	2	3.5	1.5	37.2	28.2	8	12	5	0.2						

* Size 02 is a rounded flange

How to Place an Order

Keyway standards DIN: Compliant with the new JIS standards JIS: Compliant with the old JIS standards

Armature bore diameter (dimensional symbol d)

* Models for which there are no keyway standards (models marked by [-]) on the Shaft Bore Dimensions table need not be marked with a keyway standards designation. Products with standards marked by diagonal lines are not set as standard products.

ELECTROMAGNETIC CLUTCHES & BRAKES
SPEED CHANGERS & REDUCERS
INVERTERS
LINEAR SHAFT DRIVES
TORQUE LIMITERS

ELECTROMAGNETIC-

CLUTCHES & BRAKES

ELECTROMAGNETIC

ACTUATED

ACTUATED MICRO

CLUTCHES & BRAKES ELECTROMAGNETIC CLUTCH & BRAKE UNITS SPRING-ACTUATED BRAKE

SERIES

-ACTI

ELECTROMAGNETIC TOOTH CLUTCHES

BRAKE MOTORS

POWER SUPPLIES

		Clutch/brake torque [N·r								
	0 0.	5 1	.0 1	.5	2.0					
102 Models			(0.4~)	2.4)						
CYT Models).4 ~ 1.0)								
112 Models			(0.4~)	2.4)						
	•		•	•	•					

Application Automated teller machines, sorters, office equipment, weighing and packaging machinery, printing machinery, bookbinding machinery, optical equipment

Micro Clutches and Micro Brakes for Precise Control of Compact Precision Equipment

These micro clutches and micro brakes are ideal for compact precision equipment where variations in torque and response must be avoided, such as office equipment, communication equipment, and automobiles. In addition to the 102 (clutch) and 112 (brake) models, which share the same basic clutch/brake design, we also provide CYT models (clutches), which can be customized into a wide variety of types to meet customer needs.

Armature type-1 Armature type-2

||

Armature type-3

Electromagnetic-actuated Micro Clutches - Flange-mounted Type

Stator and rotor are combined and directly mounted on stationary parts, such as frames, and fixed in place. These are short in the axial direction and can use space near walls effectively. Select the armature according to the coupling type used (through-shaft, butt shaft, etc.).

Clutch torque	[N·m]	0.4~2.4
Operating temperature	[℃]	$-10 \sim +40$
Backlash		Zero

RoHS-compliant

Electromagnetic-actuated Micro Clutches - Bearing-mounted Type

These integrate the stator and rotor, which are held to the stationary parts of the machine by a drive pin arm; the rotor is locked to the rotation shaft by a set screw. They are designed to be relatively easy to mount, reducing the processing work required for mounting. Select the armature according to the coupling type used (through-shaft, butt shaft, etc.).

Clutch torque	[N·m]	$0.4 \sim 2.4$	
Operating temperature	[°C]	$-10 \sim +40$	
Backlash		Zero	

RoHS-compliant

CYT Electromagnetic-actuated Micro Clutches - Custom Type

The CYT models are the basic building blocks for customized microclutches. The basic model is bearing mounted. Two types are available for different shaft rotation speeds: a dry metal type and a ball bearing type. Armature type-3 is standard, but many customizations are possible.

Clutch torque	[N·m]	$0.4 \sim 1.0$	
Operating temperature	[℃]	$-10 \sim +40$	
Backlash		Zero	

RoHS-compliant

112 Electromagnetic-actuated Micro Brakes

RoHS-compliant (except size #02)

Brakes are used to brake and hold rotating bodies. The flange of the stator is locked securely to a strong stationary part. Select an armature that factors in the mounting space available.

Brake torque	[N·m]	0.4 ~ 2.4	
Operating temperature	[℃]	$-10 \sim +40$	
Backlash		Zero	

Mounting and CYT Customization Examples

Flange-mounting example with 102

The stator is directly mounted on a stationary part, such as a frame, by a mounting flange, and fixed in place. The rotor is locked to the rotation shaft using a key. The stator and rotor are combined via a narrow air gap that serves as part of the magnetic circuit to form a magnetic pole.

Dry-metal type mounting example with CYT

The stator is integrated with the rotor via dry metal, and held to the stationary parts of the machine by a drive pin arm. The rotor is locked to the rotation shaft using a set screw. The stator and rotor form a magnetic pole via the dry metal.

Bearing-mounting example with 102.

The stator is integrated with the rotor via a bearing and held to the stationary parts of the machine by a drive pin arm. The rotor is locked to the rotation shaft using a set screw. The stator and rotor form a magnetic pole via the bearing (ferrous oil-impregnated metal).

Butt shaft mounting example with 102

The stator is mounted on the shaft via a bearing and held to the stationary parts of the machine by a drive pin arm. The stator and rotor are combined via a narrow air gap that serves as part of the

magnetic circuit to form a magnetic pole.

Ball-bearing type mounting example with CYT

In designs that use butt shafts, the two shafts can be reliably centered using fitting flanges, as shown in the figure.

Dry-metal type embedding example with CYT

We design to your requirements using timing pulleys, gears and the like mounted on armature type-3.

Mounting and CYT Customization Examples

Armature type-3 mounting example with 112

Armature type-3 is used by directly mounting it to a transmission element such as a V-pulley or to a rotating body that stops inertial force. The shaft of the brake part requires no processing. The shaft diameter may also be determined freely. Air gap "a" can be set easily using collars and shims. Corrections are easily accomplished by adding or removing shims.

Armature type-2 mounting example with 112

Armature type-2 has the smallest mounting-space footprint of any of the armatures, so overhang is not a concern even when a sprocket or the like is mounted on the brake tip.

Air gap "a" can be set easily using collars and shims.

Corrections are easily accomplished by adding or removing shims.

Example of the combination of clutches and brakes

This example uses a two-step speed-change mechanism combining two clutches and a brake.

Example of the combination of clutches and brakes

Shaft drive is both forward and reverse in combination with a clutch in this example. Start and stop freely by mounting brakes on each shaft.

ELECTROMAGNETIC CLUTCHES & BRAKES

& REDUCERS

LINEAR SHAFT DRIVES

TORQUE LIMITE

ROSTA

SERIES

ELECTROMAGNET	ELECTROMAGNETIC- ACTUATED MICRO CLUTCHES & BRAKES
IIC-ACTUATED CLU	ELECTROMAGNETIC- ACTUATED CLUTCHES & BRAKES
ITCHES & BRAKES	ELECTROMAGNETIC CLUTCH & BRAKE UNITS

SPRING-ACTUATED BRAKE

ELECTROMAGNETIC TOOTH CLUTCHES

BRAKE MOTORS

POWER SUPPLIES

MODELS

102

СҮТ 112

Armature type-1 mounting example on vertical shaft with 112

Since there is no restriction on mounting direction, there is no running torque or abnormal wear even when mounted on vertical shafts. It is easy to set air gap a: simply move armature type-1 and lock it in place with a set screw.

102-Types Electromagnetic Micro Clutches - Flange-mounted Type

Specifications

		Dynamic		Coil (a	t 20°C)	Неа		Rotating part mo	ment of inertia J		Total work			-	
Model	Size	friction torque Td [N·m]	Voltage [V]	Wattage [W]	Current [A]	Resistance [Ω]	at resistance class	Max. rotation speed [min ⁻¹]	Armature [kg·m²]	Rotor [kg·m²]	Allowable engaging energy E _{ea} ℓ [J]	performed until read- justment of the air gap ET [J]	Armature pull-in time t₁ [s]	Torque rise time t _P [s]	Torque extinction time ta [s]	Mass [kg]
102-02-13								10000	6.75 × 10 ⁻⁷							0.075
102-02-15	02	0.4	DC24	6	0.25	96	В	500	1.00×10^{-6}	$2.45 imes 10^{-6}$	1500	$2 imes 10^{6}$	0.009	0.019	0.017	0.081
102-02-11								10000	1.00×10^{-6}							0.079
102-03-13								10000	1.30×10^{-6}							0.096
102-03-15	03	0.6	DC24	6	0.25	96	В	500	1.95×10^{-6}	$3.25 imes 10^{-6}$	2300	$3 imes10^{6}$	0.009	0.022	0.020	0.105
102-03-11								10000	1.95 × 10 ⁻⁶							0.103
102-04-13								10000	$4.38 imes 10^{-6}$							0.178
102-04-15	04	1.2	DC24	8	0.33	72	В	500	$6.15 imes 10^{-6}$	1.41 × 10 ⁻⁵	4500	6 × 10 ⁶	0.011	0.028	0.030	0.195
102-04-11								10000	$6.15 imes 10^{-6}$							0.191
102-05-13								10000	9.08 × 10 ⁻⁶							0.310
102-05-15	05	2.4	DC24	10	0.42	58	В	500	1.38 × 10 ⁻⁵	3.15 × 10 ⁻⁵	9000	9 × 10 ⁶	0.012	0.031	0.040	0.335
102-05-11								10000	1.38 × 10 ⁻⁵							0.325

The dynamic friction torque, Td, is measured at a relative speed of 100 min⁻¹.
 The moment of inertia of a rotating body and mass are measured for the maximum bore diameter

* Keep supply voltage fluctuation to within 10% of coil voltage.

Dimensions (102- 🗌 -13)

(For direct mounting)

S	Radial direction dimensions													Axial direction dimensions								
ze	A 1	A ₂	A ₃	A 4	C 1	C ₂	C3	C4	Cs	S	V 1	V_2	V_3	Z	Н	J	К	L	Р	М	а	Х
02	31	28	19.5	10.5	39	33.5	11.4	11	8	-	2-2.1	2-5.3	2-4	4-90°	18	16.5	1.5	20.5	5	1.1	0.1	0.8
03	34	32	23	12.5	45	38	13.6	13	10	33	3-2.6	3-6	3-4.5	6-60°	22.2	20.2	2	24.5	6.7	1.3	0.15	1.2
04	43	40	30	18.5	54	47	20	19	15.5	41	3-3.1	3-6	3-5	6-60°	25.4	23.4	2	28.2	7	1.3	0.15	1.5
05	54	50	38	25.5	65	58	27.2	26	22	51	3-3.1	3-6.5	3-5.5	6-60°	28.1	26.1	2	31.3	8.2	1.5	0.2	1.5

* Size 02 is a rounded flange

* The rotor of size 02 has no keyway. Lock it in place by press-fitting it onto the shaft or the like.

Size

102-03-13 24V 6DIN

Rotor bore diameter (dimensional symbol d)

Keyway standards DIN: Compliant with the new JIS standards JIS: Compliant with the old JIS standards

*Models for which there are no keyway standards (models marked by [-]) on the Shaft Bore Dimensions table need not be marked with a keyway standards designation. Products with standards marked by diagonal lines are not set as standard products.

Dimensions (102- 🗌 -15)

(For through-shafts)

Radial direction dimensions

C₂

33.5

38

47

58

C₃

11.4

13.6

20

27.2

Rotor bore diameter (dimensional symbol d1)

C₄

11

13

19

26

102-03-15 24V R6DIN A6

C₅

8

10

15.5

22

s

33

41

51

н

18

22.2

25.4

28.1

J

16.5

20.2

23.4

26.1

к

1.5

2

2

2

			Shaft	bore dir
Size	d1	d ₂	Models con the new JIS	pliant wi
	H7	H7	b P9	t
02	5	5	_	_
03	6	6	$2 \ {}^{- 0.006}_{- 0.031}$	0.8 + 0.0
•	8	8	$2 \begin{array}{c} - 0.006 \\ - 0.031 \end{array}$	0.8 + 0.0

Axial direction dimensions

L

22.4

26.5

30.8

34.3

05

L

27.5

34.5

40.2

43.3

* The armature type-5 bore d2 is a straight bore.

м

1.1

1.3

1.3

1.5

10 10 3 $^{-0.006}_{-0.031}$ 1.2 $^{+0.3}_{0}$

N₁

4.8

7.8

9.1

8.8

Unit [mm]

а

0.1

0.15

0.15

0.2

Unit [mm]

dels compliant with ne old JIS standards **b** E9

 $^{+0.050}_{+0.020}$ 1.5 $^{+0.5}_{-0.50}$

 $^{+0.050}_{+0.020}$ 1.5 $^{+0.5}_{-0.020}$

 $^{+\,0.050}_{+\,0.020}$ 2 $^{+\,0.5}_{0}$

 $4 \begin{array}{c} + 0.050 \\ + 0.020 \end{array}$ 1.5 $\begin{array}{c} + 0.5 \\ 0 \end{array}$

Unit [mm]

ore dimensions

+ 0.3

10 10 3 $^{-0.006}_{-0.031}$ 1.2 $^{+0.3}_{0}$ 4 $^{+0.050}_{+0.020}$ 1.5 $^{+0.5}_{0}$

 $15 \hspace{.1in} 15 \hspace{.1in} 5 \hspace{.1in} {\overset{-0.012}{_{-0.042}}} \hspace{.1in} 2 \hspace{.1in} {\overset{+0.5}{_{0}}} \hspace{.1in} 5 \hspace{.1in} {\overset{+0.050}{_{+0.020}}} \hspace{.1in} 2 \hspace{.1in} {\overset{+0.5}{_{0}}}$

Р

5

6.7

7

8.2

liant with Models compliant with the old JIS standards **b** E9

EI ECTROMAGNET	ELECTROMAGNETIC- ACTUATED MICRO CLUTCHES & BRAKES							
IIC-ACTIINTED (II	ELECTROMAGNETIC- ACTUATED CLUTCHES & BRAKES							
TTTUES & RDAVES	ELECTROMAGNETIC CLUTCH & BRAKE UNITS							
SPRING-ACTUATED BRAKE								
ELECTROMAGNETIC TOOTH CLUTCHES								
-								

BRAKE MOTORS

Armature bore diameter (dimensional symbol d2) Keyway standards DIN: Compliant with the new JIS standards JIS: Compliant with the old JIS standards

*Models for which there are no keyway standards (models marked by [-]) on the Shaft Bore Dimensions table need not be marked with a keyway standards designation. Products with standards marked by diagonal lines are not set as standard products.

CAD

Dimensions (102- 🗌 -11)

(For butt shafts)

Size

02 31

03 34

04

05 54

A₁

43

* Size 02 is a rounded flange

A₂

28

32

40

50

How to Place an Order

A₃

13

14

18

28

C₁

39

45

54

65

* The rotor of size 02 has no keyway. Lock it in place by press-fitting it onto the shaft or the like

Size

Radial direction dimens

C₃

11.4

13.6

20

27.2

 C_2

33.5

38

47

58

	Shaft bore dimensions									
Size	d ₁	d ₂	Models con the new JIS	pliant with standards	Models the old					
	H7	H7	b P9	t	b E9					
02	5	5	_	_						
03	6	6	$2 \ \ {}^{-\ 0.006}_{-\ 0.031}$	0.8 ^{+ 0.3}						
	8	8	$2 \ {}^{- 0.006}_{- 0.031}$	$0.8 \ {}^{+ \ 0.3}_{0}$	/					
04	10	10	$3 \ {}^{- 0.006}_{- 0.031}$	$1.2 {}^{+ 0.3}_{0}$	4 + 0.0					
05	10	10	$3 \ {}^{-\ 0.006}_{-\ 0.031}$	$1.2 {}^{+ 0.3}_{0}$	4 + 0.0 + 0.0					
05	15	15	$5 \ {}^{- 0.012}_{- 0.042}$	$2 {}^{+0.5}_{0}$	5 +0.0					

М

1.1

1.3

1.3

1.5

102 Unit [mm] Axial direction dimensi CYT Ρ U Т а 112 5 7 2.5 0.1 6.7 10 4 0.15

5

5

0.15

0.2

12

12

* Size 02 is a rounded flange

 \mathbf{A}_1

34

 \mathbf{A}_2

28

32

40

50

 A_3

9.5

12

17

24

Size

02 31

03

04 43

05 54

* The rotor of size 02 has no keyway. Lock it in place by press-fitting it onto the shaft or the like.

C₁

39

45

54

65

How to Place an 102-03-11 24V R6DIN A6DIN Order Size –

 C_4

11

13

19

26

C₅

8

10

15.5

22

s

33

41

51

m

М3

2-M3

2-M3

2-M4

н

18

22.2

25.4

28.1

J

16.5

20.2

23.4

26.1

κ

1.5

2

2

2

 L_1

27.5

34.5

40.2

43.3

L₂

22.5

26.5

30.8

34.3

Rotor bore diameter (dimensional symbol d1) -

Keyway standards DIN: Compliant with the new JIS standards JIS: Compliant with the old JIS standards

Armature bore diameter (dimensional symbol d2)

7

8.2

Keyway standards DIN: Compliant with the new JIS standards JIS: Compliant with the old JIS standards

*Models for which there are no keyway standards (models marked by [-]) on the Shaft Bore Dimensions table need not be marked with a keyway standards designation. Products with standards marked by diagonal lines are not set as standard products.

ELECTROMAGNETIC **CLUTCHES & BRAKES**

POWER SUPPLIES

MODELS

102--3 **Types** Electromagnetic Micro Clutches - Bearing-mounted Type

Specifications

		Dynamic		Coil (at	: 20℃)		res	Max.	Rotating part mo	ment of inertia J	Allowable	Total work per- formed until	Armature	Torque	Torque	
Model	Size	torque Td [N·m]	Voltage [V]	Wattage [W]	Current [A]	Resistance [Ω]	Heat istance class	rotation speed [min ⁻¹]	Armature [kg·m²]	Rotor [kg⋅m²]	engaging energy Eea ℓ [J]	readjustment of the air gap ET [J]	pull-in time ta [s]	rise time t _P [s]	extinction time td [s]	Mass [kg]
102-02-33									$6.75 imes 10^{-7}$							0.076
102-02-35	02	0.4	DC24	6	0.25	96	В	500	$1.00 imes 10^{-6}$	2.75×10^{-6}	1500	$2 imes 10^{6}$	0.009	0.019	0.017	0.082
102-02-31									$1.00 imes 10^{-6}$							0.080
102-03-33									$1.30 imes 10^{-6}$							0.101
102-03-35	03	0.6	DC24	6	0.25	96	В	500	$1.95 imes 10^{-6}$	$4.08\times10^{_{-6}}$	2300	$3 imes 10^{6}$	0.009	0.022	0.020	0.110
102-03-31									$1.95 imes 10^{-6}$							0.108
102-04-33									$4.38 imes 10^{-6}$							0.183
102-04-35	04	1.2	DC24	8	0.33	72	В	500	$6.15 imes 10^{-6}$	$1.44 imes 10^{-5}$	4500	$6 imes 10^{6}$	0.011	0.028	0.030	0.200
102-04-31									$6.15 imes 10^{-6}$							0.196
102-05-33									$9.08\times10^{_{-6}}$							0.321
102-05-35	05	2.4	DC24	10	0.42	58	В	500	$1.38 imes 10^{-5}$	$2.90 imes 10^{-5}$	9000	9 × 10 ⁶	0.012	0.031	0.040	0.346
102-05-31									$1.38 imes 10^{-5}$							0.336

* The dynamic friction torque, T_d, is measured at a relative speed of 100 min⁻¹.
 * The moment of inertia of a rotating body and mass are measured for the maximum bore diameter.
 * Keep supply voltage fluctuation to within 10% of coil voltage.

Dimensions (102- 🗌 -33)

(For direct mounting)

		Unit [mm]
Sizo	Shaft bore dimensions	
Size	d н7	
02	5	
03	6	
	8	
04	10	
05	10	
05	15	

Unit [mm]

Size		Radial direction dimensions													Axial direction dimensions							
	A ₁	A ₂	A ₃	A ₄	F	V ₁	V_2	V ₃	G1	G ₂	Y ₁	Y ₂	Z	m	Н	R	L ₁	L ₂	Р	Ν	т	а
02	31	28	19.5	10.5	14	2-2.1	2-5.3	2-4	16.8	20	3.1	8	4-90°	2-M3	19.5	1.6	25.9	23.5	5	0.8	2.5	0.1
03	34	32	23	12.5	16	3-2.6	3-6	3-4.5	20	23	3.1	8	6-60°	2-M3	21.9	1.6	28.5	26.2	4.7	1.2	2.3	0.15
04	43	40	30	18.5	22	3-3.1	3-6	3-5	23	26	3.1	8	6-60°	2-M4	25.1	1.6	33.2	30.4	5	1.5	2.8	0.15
05	54	50	38	25.5	30	3-3.1	3-6.5	3-5.5	28	31	3.1	8	6-60°	2-M5	27.9	1.6	37.3	34.1	6	1.5	3.3	0.2
05	54	50	38	25.5	30	3-3.1	3-6.5	3-5.5	28	31	3.1	8	6-60°	2-M5	27.9	1.6	37.3	34.1	6	1.5	3.3	0

How to Place an	102
Order	Size –

2-<u>03</u>-33 24V <u>6</u>

-Rotor bore diameter (dimensional symbol d)

Dimensions (102- 🗌 -35)

(For through-shafts)

Radial direction dimensions

G1

16.8

20

23

28

Size

G2

20

23

26

31

Y1

3.1

3.1

3.1

3.1

Y₂

8

8

8

8

m

2-M3

2-M3

2-M4

2-M5

1

		Unit [mm]
Size	Shaft bore	dimensions
	d 1 н7	d ₂ H7
)2	5	5
)3	б	6
14	8	8
14	10	10
15	10	10
19	15	15

Axial direction dimensions

L2

27.9

30.5

35.8

40.3

Ρ

5

4.7

5

6

Ν

4.8

7.8

9.1

8.8

Т

2.5

2.3

2.8

3.3

а

0.1

0.15

0.15

0.2

Unit [mm]

SERIES

ELECTROMAGNET	ELECTROMAGNETIC- ACTUATED MICRO CLUTCHES & BRAKES
FIC-ACTUATED CLU	ELECTROMAGNETIC- ACTUATED CLUTCHES & BRAKES
JTCHES & BRAKES	ELECTROMAGNETIC CLUTCH & BRAKE UNITS
_	

RING-ACTUATED BRAKE

ELECTROMAGNETIC TOOTH CLUTCHES

OTORS

UPPLIES

t [mm]	

1.5	
2 + 0.5	
	MODELS
	102
Unit [mm]	СҮТ

112

BRAKE M
POWER S

102-03-35 24V R6 A6 Armature bore diameter (dimensional symbol d2) -Rotor bore diameter (dimensional symbol d1)

H1

23.5

26.2

30.4

34.1

H2

19.5

21.9

25.1

27.9

R

1.6

1.6

1.6

1.6

L1

33

38.5

45.2

49.3

Dimensions (102- 🗌 - 31)

A2

28

32

40

50

How to Place an

Order

Аз

13

14

18

28

F

14

16

22

30

(For butt shafts)

Size

02

03

04

05

A1

31

34

43

54

Radial direction dimensions

G₁

16.8

Size

 G_2

20

	b
	+
-	ΨΨ.

 H_1

23.5

H₂

19.5

Y1		
b l l	Size	d 1 Н7
	02	5
	03	6
	~ (8
\$Y\$	04	10
	05	10
	05	15
а а ШШ		

R

1.6

 L_1

33

					Unit [mm]			
Shaft bore dimensions								
d1	d2	Models con the new JIS	pliant with standards	Models con the old JIS	pliant with standards			
H7	H7	b P9	t	b E9	t			
5	5	-	-					
6	6	$2 \begin{array}{c} -0.006 \\ -0.031 \end{array}$	0.8 + 0.3					
8	8	$2 \ \ {}^{- 0.006}_{- 0.031}$	0.8 + 0.3					
10	10	$3 \begin{array}{c} -0.006 \\ -0.031 \end{array}$	$1.2^{+0.3}_{0}$	$4 \ ^{+ \ 0.050}_{+ \ 0.020}$	1.5 ^{+ 0.5}			
10	10	$3 \begin{array}{c} -0.006 \\ -0.031 \end{array}$	$1.2 {}^{+ 0.3}_{0}$	$4 \ ^{+ \ 0.050}_{+ \ 0.020}$	1.5 ^{+ 0.5}			
15	15	$5 \begin{array}{c} -0.012 \\ -0.042 \end{array}$	2 + 0.5	$5 \ ^{+ \ 0.050}_{+ \ 0.020}$	2 + 0.5			

12 20 23 3.1 8 2-M3 2-M3 21.9 38.5 30.5 4.7 16 26.2 1.6 17 22 23 3.1 8 2-M4 2-M3 30.4 25.1 45.2 35.8 5 26 1.6 30 28 3.1 8 27.9 40.3 24 31 2-M5 2-M4 34.1 1.6 49.3 6

 \mathbf{m}_2

М3

How to Place an Order

A₂

28

32

40

50

 A_3

9.5

F

14

Size

02

03 34

04 43

05 54

A₁

31

102-03-31 24V R6 A6DIN

 \mathbf{Y}_2

8

 \mathbf{m}_1

2-M3

Rotor bore diameter (dimensional symbol d1)

 \mathbf{Y}_1

3.1

Keyway standards DIN: Compliant with the new JIS standards JIS: Compliant with the old JIS standards

Armature bore diameter (dimensional symbol d2)

Axial direction dimensions

Ρ

5

U

7

10

12

12

T₁

2.5

2.3

2.8

3.3

 T_2

2.5

4

5

5

а

0.1

0.15

0.15

0.2

 L_2

27.9

*Models for which there are no keyway standards (models marked by [-]) on the Shaft Bore Dimensions table need not be marked with a keyway standards designation. Products with standards marked by diagonal lines are not set as standard products.

ELECTROMAGNETIC

CLUTCHES & BRAKES

CYT Models Electromagnetic Micro Clutches - Bearing-mounted Type

Specif	icat	tions														
		Dynamic		Coil (a	t 20℃])	Heat	Max.	ax. Rotating part moment of inertia			Total	Armature	Torque	Torque	
Model	Size	friction torque Ta [N·m]	Voltage [V]	Wattage [W]	Current [A]	Resistance [Ω]	resistance class	rotation speed [min ⁻¹]	Armature [kg·m²]	Rotor [kg·m²]	engaging energy Eeal [J]	work ET [J]	pull-in time ta [s]	rise time t _P [s]	extinction time ta [s]	Mass [kg]
CYT-025-33B	025	0.4	DC24	4.5	0.188	128	В	3600	1.00×10^{-6}	1.43×10^{-6}	800	$1.0 imes 10^6$	0.014	0.028	0.030	0.07
CYT-03-33B CYT-03-33M	03	0.5	DC24	5.5	0.23	105	В	3600 500	1.30 × 10 ⁻⁶	1.85×10^{-6} 1.90×10^{-6}	900	1.5 × 10 ⁶	0.015	0.030	0.040	0.13 0.11
CYT-04-33B CYT-04-33M	04	1.0	DC24	5.9	0.25	98	В	3600 500	5.15 × 10 ⁻⁶	1.00×10^{-5} 1.05×10^{-5}	1900	2.0 × 10 ⁶	0.030	0.040	0.040	0.26 0.23

The dynamic friction torque, Ta, is measured at a relative speed of 100 min⁻¹.
 The rotating part moment of inertia and mass are measured for the maximum bore diameter.

* Keep supply voltage fluctuation to within 10% of coil voltage. Also, be careful that energization does not exceed 50%.

Dimensions (CYT- - -33M) 11 (Lead wire positions) 45 Н а 8±0.2 m F 3.1 (Positioned 3- Ø V2 -φ <at 120°) ů Ğ ¢ A3±0.05 φA4 ϕA_2 φĂ Δ 3-¢√₃ 6.60 Back clearance dimensions for the rivet * N 200 0 head during mounting are marked with [*]. Unit [mm] Radial direction dimensions Axial direction dimensions Size **V**1 V_2 Ν d \mathbf{A}_1 \mathbf{A}_2 A₃ **A**₄ F V_{3} G \mathbf{G}_2 m Н R L₁ L_2 Ρ Т а 6 0.2 ± 0.05 23 12.5 14 3-2.6 3-5.5 3-6 23 M3 21 1.2 28.6 26.2 3 2.3 03 34 32 20 13

27.5

25

M4

25.3

1.2

35.1

32.4

17.5

3.5

3

0.2 + 0.05

18.5 * Dimensional symbols N and V3 indicate the clearance dimensions for the rivet head during mounting.

18

8 8

10

45

42

30

04

How to Place an CYT-03-33M 24V 6 Order - Rotor bore diameter (dimensional symbol d) Size

3-3.1

3-6

3-6

Dimensions (CYT-025-33B)

How to Place an Order

CYT-025-33B 24V 6

Dimensions (CYT- 🗌 -33B)

																									Unit [mm]
Sizo	Nominal			R	adial d	irecti	on dim	ensior	ıs			Axial direction dimensions									Shaft bore dimensions				
Size	diameter	A ₁	A ₂	A ₃	A ₄	F	V 1	V_2	V_3	G1	G_2	н	R	L ₁	L ₂	L3	L ₄	Ρ	Ν	т	а	d ₂	\mathbf{d}_1	b	t
00	6	34	32	23	12.5	15	3-2.6	3-5.5	3-6	20	23	21	1.2	22.2	19.8	10	11.3	13	3	1.5	$0.2 \pm 0.05 $	6	6	$2 \ ^{+ \ 0.030}_{+ \ 0.005}$	0.8 + 0.3
03	8	34	32	23	12.5	16	3-2.6	3-5.5	3-6	20	23	21	1.2	22.2	19.8	10	11.3	13	3	1.5	$0.2 \pm 0.05 $	8	8	$2 \ ^{+ \ 0.030}_{+ \ 0.005}$	0.8 + 0.3
	8	45	42	30	18.5	19	3-3.1	3-6	3-6	25	28	25.3	1.2	26.8	24.1	12	13	17.5	3.5	0.9	$0.2 \ ^{+\ 0.05}_{-\ 0.1}$	8	8	$2 \ ^{+ \ 0.030}_{+ \ 0.005}$	0.8 + 0.3 0
04	10	45	42	30	18.5	19	3-3.1	3-6	3-6	25	28	25.3	1.2	26.8	24.1	14	11	17.5	3.5	0.9	$0.2 \ ^{+\ 0.05}_{-\ 0.1}$	10	10	3 ⁺ ^{0.025}	1.2 + 0.3

* Dimensional symbols N and V3 indicate the clearance dimensions for the rivet head during mounting.

ELECTROMAGNETIC CLUTCHES & BRAKES	
SPEED CHANGERS & REDUCERS	
INVERTERS	
LINEAR SHAFT DRIVES	
TORQUE LIMITERS	

SERIES ELECTROMAGNETIC-ACTUATED MICRO **CLUTCHES & BRAKES** ELECTROMAGNETIC-ACTUATED **CLUTCHES & BRAKES** ELECTROMAGNETIC CLUTCH & BRAKE UNITS SPRING-ACTUATED BRAKE

ELECTROMAGNETIC TOOTH CLUTCHES

BRAKE MOTORS

POWER SUPPLIES

MODELS			
102			
СҮТ	 		
112	 	 	

112 Models Electromagnetic Micro Brakes

Specifications

		Dynamic friction		Coil (at	t 20℃)		Heat	Max.	Armature	Allowable	Total work	Armature	Torque	Torque	
Model	Size	torque Td [N·m]	Voltage [V]	Wattage [W]	Current [A]	Resistance [Ω]	resistance class	speed [min ⁻¹]	moment of inertia J [kg·m²]	engaging energy E _{ea} ℓ [J]	Readjustment of the air gap ET [J]	pull-in time ta [s]	time tp[s]	decaying time td [s]	Mass [kg]
112-02-13									6.75 × 10 ⁻⁷						0.053
112-02-12	02	0.4	DC24	6	0.25	96	В	10000	1.00×10^{-6}	1500	$2 imes 10^6$	0.004	0.010	0.010	0.057
112-02-11									1.00×10^{-6}						0.057
112-03-13									1.30×10^{-6}						0.072
112-03-12	03	0.6	DC24	6	0.25	96	В	10000	1.95×10^{-6}	2300	3×10^{6}	0.005	0.012	0.008	0.079
112-03-11									1.95×10^{-6}						0.079
112-04-13									4.38×10^{-6}						0.118
112-04-12	04	1.2	DC24	8	0.33	72	В	10000	6.15 × 10 ⁻⁶	4500	$6 imes 10^{6}$	0.007	0.016	0.010	0.131
112-04-11									6.15 × 10 ⁻⁶						0.131
112-05-13									9.08 × 10 ⁻⁶						0.200
112-05-12	05	2.4	DC24	10	0.42	58	В	10000	1.38×10^{-5}	9000	9 × 10 ⁶	0.010	0.023	0.012	0.215
112-05-11									1.38 × 10 ⁻⁵						0.215

* The dynamic friction torque, T_d, is measured at a relative speed of 100 min⁻¹.
 * The rotating part moment of inertia and mass are measured for the maximum bore diameter.
 * Keep supply voltage fluctuation to within 10% of coil voltage.

Dimensions (112- 🗌 -13)

Unit [mm]

S					Radia	al directio	on dimen	Axial direction dimensions												
ze	A ₁	A ₂	A ₃	C ₁	C ₂	C ₃	C ₄	S	V ₁	V ₂	V_3	Z	Н	К	J ₁	J_2	L	Р	Х	а
02	28	19.5	10.5	39	33.5	11.4	11	-	2-2.1	2-5.3	2-4	4-90°	13.7	1.5	2.6	1.3	16.1	5	0.8	0.1
03	32	23	12.5	45	38	13.6	13	33	3-2.6	3-6	3-4.5	6-60°	17	2	3.3	1.3	19.3	6.7	1.2	0.15
04	40	30	18.5	54	47	20	19	41	3-3.1	3-6	3-5	6-60°	20	2	3.3	1.3	22.8	7	1.6	0.15
05	50	38	25.5	65	58	27.2	26	51	3-3.1	3-6.5	3-5.5	6-60°	22	2	3.5	1.5	25.2	8	1.6	0.2
Size 02	ize 02 is a rounded flange.																			

How to Place an	112-03-13 24V
Order	Siza
	Size

Dimensions (112- - 12)

s
1

CAD

	φ Φ Υ		///@I@///
ر -	~	Щ.	4

		Unit [mm]
t bore dim	ensions	
iant with andards	Models com the old JIS	pliant with standards

ize	d	the new JIS	standards	the old JIS standards				
	H7	b P9	t	b E9	t			
02	5	-	-		\nearrow			
03	6	$2 \begin{array}{c} - \ 0.006 \\ - \ 0.031 \end{array}$	0.8 + 0.3 0					
• /	8	$2 \begin{array}{c} - \ 0.006 \\ - \ 0.031 \end{array}$	0.8 + 0.3					
04	10	$3 \ {}^{- 0.006}_{- 0.031}$	$1.2 {}^{+0.3}_{0}$	4 + 0.050 + 0.020	1.5 + 0.5			
05	10	$3 \ {}^{- 0.006}_{- 0.031}$	$1.2 {}^{+0.3}_{0}$	$4 \ ^{+ \ 0.050}_{+ \ 0.020}$	1.5 + 0.5			
05	15	5 - 0.012	2 + 0.5	5 + 0.050 + 0.020	$2^{+0.5}_{0}$			

Shaf

Radial direction dimensions Axial direction dimensions A₁ **C**₁ C_2 C₃ C_4 s н к \mathbf{J}_1 J_2 L Р U 28 39 33.5 11.4 11 13.7 1.5 2.6 1.3 18.1 5 7 32 45 38 13.6 13 33 17 2 3.3 1.3 21.3 6.7 10 40 54 47 20 19 41 20 2 3.3 1.3 25.5 7 12 50 65 58 27.2 26 51 22 2 3.5 1.5 28.2 8 12

Size

02

03

04

05

* Size 02 is a rounded flange.
* The armature hub of size 02 has no keyway. Lock it in place by press-fitting it onto the shaft or the like.

How to Place an Order

Keyway standards DIN: Compliant with the new JIS standards JIS: Compliant with the old JIS standards

Armature bore diameter (dimensional symbol d)

* Models for which there are no keyway standards (models marked by [-]) on the Shaft Bore Dimensions table need not be marked with a keyway standards designation. Products with standards marked by diagonal lines are not set as standard products.

Dimensions (112- 🗌 -11)

		Sh	aft bore dim	nensions				
Size	d	Models con the new JIS	Models co with the old J	compliant I JIS standards				
	H7	b P9	t	b E9	t			
02	5	_	-					
03	6	$2 \begin{array}{c} - \ 0.006 \\ - \ 0.031 \end{array}$	0.8 + 0.3 0					
0/	8	$2 \begin{array}{c} - 0.006 \\ - 0.031 \end{array}$	0.8 + 0.3					
04	10	$3 \ {}^{- 0.006}_{- 0.031}$	$1.2 {}^{+0.3}_{0}$	4 + 0.050 + 0.020	1.5 + 0.5			
05	10	$3 \ {}^{- 0.006}_{- 0.031}$	$1.2 {}^{+0.3}_{0}$	$\begin{array}{c} 4 & {}^{+}\!$	1.5 + 0.5			
05	15	$5 \begin{array}{c} - \ 0.012 \\ - \ 0.042 \end{array}$	2 + 0.5	$5 \ ^{+ \ 0.050}_{+ \ 0.020}$	2 + 0.5			

Unit [mm]

	Shaft bore dimensions									
Size	d	Models con the new JIS	pliant with Standards	Models compliant with the old JIS standard						
	H7	b P9	t	b E9	t					
02	5	-	-							
03	6	$2 \begin{array}{c} -0.006 \\ -0.031 \end{array}$	0.8 + 0.3 0							
0/	8	$2 \begin{array}{c} -0.006 \\ -0.031 \end{array}$	0.8 + 0.3 0							
04	10	$3 \ {}^{- 0.006}_{- 0.031}$	$1.2 {}^{+ 0.3}_{0}$	4 + 0.050 + 0.020	1.5 + 0.5					
05	10	$3 \ {}^{- 0.006}_{- 0.031}$	1.2 + 0.3	$4 \ ^{+ \ 0.050}_{+ \ 0.020}$	1.5 + 0.5					
05	15	- - 0.012	a + 0.5	r + 0.050	a + 0.5					

																	Unit (mm
	v: Radial direction dimensions									Axia	al directio	n dimensi	ons				
A 1	A2	C 1	C ₂	C₃	C ₄	S	m	Н	К	J_1	J_2	L ₁	L ₂	Р	U	Т	а
28	9.5	39	33.5	11.4	11	-	M3	13.7	1.5	2.6	1.3	23.1	18.1	5	7	2.5	0.1
32	12	45	38	13.6	13	33	2-M3	17	2	3.3	1.3	29.3	21.3	6.7	10	4	0.15
40	17	54	47	20	19	41	2-M3	20	2	3.3	1.3	34.8	25.5	7	12	5	0.15
50	24	65	58	27.2	26	51	2-M4	22	2	3.5	1.5	37.2	28.2	8	12	5	0.2
	A1 28 32 40 50	A1 A2 28 9.5 32 12 40 17 50 24	A1 A2 C1 28 9.5 39 32 12 45 40 17 54 50 24 65	A1 A2 C1 C2 28 9.5 39 33.5 32 12 45 38 40 17 54 47 50 24 65 58	A1 A2 C1 C2 C3 28 9.5 39 33.5 11.4 32 12 45 38 13.6 40 17 54 47 20 50 24 65 58 27.2	A1 A2 C1 C2 C3 C4 28 9.5 39 33.5 11.4 11 32 12 45 38 13.6 13 40 17 54 47 20 19 50 24 65 58 27.2 26	A1 A2 C1 C2 C3 C4 S 28 9.5 39 33.5 11.4 11 32 12 45 38 13.6 13 33 40 17 54 47 20 19 41 50 24 65 58 27.2 26 51	A1 A2 C1 C2 C3 C4 S m 28 9.5 39 33.5 11.4 11 M3 32 12 45 38 13.6 13 33 2-M3 40 17 54 47 20 19 41 2-M3 50 24 65 58 27.2 26 51 2-M4	A1 A2 C1 C2 C3 C4 S m H 28 9.5 39 33.5 11.4 11 M3 13.7 32 12 45 38 13.6 13 33 2-M3 17 40 17 54 47 20 19 41 2-M3 20 50 24 65 58 27.2 26 51 2-M4 22	A1 A2 C1 C2 C3 C4 S m H K 28 9.5 39 33.5 11.4 11 M3 13.7 1.5 32 12 45 38 13.6 13 33 2-M3 17 2 40 17 54 47 20 19 41 2-M3 20 2 50 24 65 58 27.2 26 51 2-M4 22 2	A1 A2 C1 C2 C3 C4 S m H K J1 28 9.5 39 33.5 11.4 11 M3 13.7 1.5 2.6 32 12 45 38 13.6 13 33 2-M3 17 2 3.3 40 17 54 47 20 19 41 2-M3 20 2 3.3 50 24 65 58 27.2 26 51 2-M4 22 2 3.5	A1 A2 C1 C2 C3 C4 S m H K J1 J2 28 9.5 39 33.5 11.4 11 M3 13.7 1.5 2.6 1.3 32 12 45 38 13.6 13 33 2.M3 17 2 3.3 1.3 40 17 54 47 20 19 41 2.M3 20 2 3.3 1.3 50 24 65 58 27.2 26 51 2.M4 22 2 2.5 1.5	A1 A2 C1 C2 C3 C4 S m H K J1 J2 L1 28 9.5 39 33.5 11.4 11 M3 13.7 1.5 2.6 1.3 23.1 32 12 45 38 13.6 13 33 2-M3 17 2 3.3 1.3 29.3 40 17 54 47 20 19 41 2-M3 20 2 3.3 1.3 34.8 50 24 65 58 27.2 26 51 2-M4 22 2 3.5 1.5 37.2	A1 A2 C1 C2 C3 C4 S m H K J1 J2 L1 L2 28 9.5 39 33.5 11.4 11 M3 13.7 1.5 2.6 1.3 23.1 18.1 32 12 45 38 13.6 13 33 2.M3 17 2 3.3 1.3 21.3 21.3 40 17 54 47 20 19 41 2.M3 20 2 3.3 1.3 34.8 25.5 50 24 65 58 27.2 26 51 2.M4 22 2 3.5 1.5 37.2 28.2	A1 A2 C1 C2 C3 C4 S m H K J1 J2 L1 L2 P 28 9.5 39 33.5 11.4 11 M3 13.7 1.5 2.6 1.3 23.1 18.1 5 32 12 45 38 13.6 13 2-M3 17 2 3.3 1.3 29.3 21.3 6.7 40 17 54 47 20 19 41 2-M3 20 2 3.3 1.3 34.8 25.5 7 50 24 65 58 27.2 26 51 2-M4 22 2 3.5 1.5 37.2 28.2 8	A1 A2 C1 C2 C3 C4 S m H K J1 J2 L1 L2 P U 28 9.5 39 33.5 11.4 11 M3 13.7 1.5 2.6 1.3 23.1 18.1 5 7 32 12 45 38 13.6 13 2.43 2.7 2.0 3.3 1.3 29.3 21.3 6.7 10 40 17 54 47 20 19 41 2.43 20 2 3.3 1.3 34.8 25.5 7 12 50 2.4 65 58 27.2 2.6 51 2.44 2 2 3.5 1.5 37.2 28.2 8 12	A1 A2 C1 C2 C3 C4 S m H K J1 J2 L1 L2 P U T 28 9.5 39 33.5 11.4 11 M3 13.7 1.5 2.6 1.3 23.1 18.1 5 7 2.5 32 12 45 38 13.6 13 2.43 17 2 3.3 1.3 21.3 6.7 1.0 4 40 17 54 47 20 19 41 2.43 20 2 3.3 1.3 34.8 2.5.5 7 12 5 50 24 65 58 27.2 26 51 2.44 22 2 3.5 1.5 37.2 28.2 8 12 5

* Size 02 is a rounded flange

How to Place an Order

112-03-11 24V 6DIN Siz

Keyway standards DIN: Compliant with the new JIS standards JIS: Compliant with the old JIS standards

Armature bore diameter (dimensional symbol d)

* Models for which there are no keyway standards (models marked by [-]) on the Shaft Bore Dimensions table need not be marked with a keyway standards designation. Products with standards marked by diagonal lines are not set as standard products.

ELECTROMAGNETIC CLUTCHES & BRAKES
SPEED CHANGERS & REDUCERS
INVERTERS
LINEAR SHAFT DRIVES
TORQUE LIMITERS
ROSTA
SERIES

Unit [mm]

a

0.1

0.15

0.15

0.2

ELECTROMAGNETIC-ACTUATED MICRO **CLUTCHES & BRAKES** ELECTROMAGNETIC ACTUATED **CLUTCHES & BRAKES** ELECTROMAGNETIC **CLUTCH & BRAKE** UNITS

SPRING-ACTUATED BRAKE

ELECTROMAGNETIC TOOTH CLUTCHES

BRAKE MOTORS

POWER SUPPLIES

MODELS 102

СҮТ 112	102		
112	СҮТ	 	
	112	 	

Call: 01386 421 005 Fax: 01386 422 441 Email: sales@abssac.co.uk Web: www.abssac.co.uk

ABSSAC Ltd, E1A The Enterprise Centre, Enterprise Way, Evesham, Worcestershire. United Kingdom. WR11 1GS